The paper deals with several criteria for the transcendence of infinite products of the form $\prod _{n=1}^\infty {[b_n\alpha ^{a_n}]}/{b_n\alpha ^{a_n}}$ where $\alpha >1$ is a positive algebraic number having a conjugate $\alpha ^*$ such that $\alpha \not =|\alpha ^*|>1$, $\{a_n\}_{n=1}^\infty $ and $\{b_n\}_{n=1}^\infty $ are two sequences of positive integers with some specific conditions. \endgraf The proofs are based on the recent theorem of Corvaja and Zannier which relies on the Subspace Theorem ({P. Corvaja, U. Zannier}: On the rational approximation to the powers of an algebraic number: solution of two problems of Mahler and Mendès France, Acta Math. 193, (2004), 175–191).