„Proteinase-activated“ receptor-2 (PAR-2) is a G protein-coupled transmembrane receptor with seven transmembrane domains activated by trypsin. It has been shown in the pancreatic tissue that PAR-2 is involved in duct/acinary cells secretion, arterial tonus regulation and capillary liquid content turnover under physiological conditions. These above mentioned structures play an important role during the development of acute pancreatitis and are profoundly influenced by a high concentration of trypsin enzyme after its secretion into the interstitial tissue from the basolateral aspect of acinar cells. Among the other factors, it is the increase of interstitial trypsin concentration followed rapidly by PAR-2
action on pancreatic vascular smooth muscle cells that initiates ischemic changes in pancreatic parenchyma and that finally leads to necrosis of the pancreas. Consequent reperfusion perpetuates changes leading to the acute pancreatitis development. On the contrary, PAR-2 action on both exocrine and duct structures seems to play locally a protective role during acute pancreatitis development. Moreover, PAR-2 action is not confined to the pancreas but it contributes to the systemic vascular endothelium and immune cell activation that triggers the systemic inflammatory response syndrome (SIRS) contributing to an early high mortality rate in severe disease.
The ability of activity modulators of ornithine transcarbamoylase (OCT) from the liver of the thresher shark Alopias vulpinus to stabilize the enzyme against thermal denaturation was investigated in the tri-buffer at pH 7.8, at temperatures ranging from 60 to 70 °C, in the presence of polyhydroxylic molecules such as glycerol and sugars. The study indicated that in the presence of 0.5 M sugars and 1.6 M glycerol in the preincubation medium the OCT activity increases. When trehalose is introduced directly in the reaction mixture in a range of concentration of 0.25-0.5 M, the activity is lower than that with maltose, glycerol and buffer alone. Kinetic data for carbamoyl phosphate and ornithine with and without maltose and glycerol are similar, whereas trehalose increases the kinetic values. Arrhenius plots show an increase of activation energy due to trehalose, whereas values obtained with maltose and glycerol are similar to the control