In this paper we prove two results. The first is an extension of the result of G. D. Jones [4]: (A) Every nontrivial solution for \[ \left\rbrace \begin{array}{ll}(-1)^n u^{(2n)} + f(t,u) = 0,\hspace{5.0pt}\text{in} \hspace{5.0pt}(\alpha , \infty ), u^{(i)}(\xi ) = 0, \quad i = 0,1,\dots , n-1, \hspace{5.0pt} \text{and} \hspace{5.0pt}\xi \in (\alpha , \infty ), \end{array}\right.\] must be unbounded, provided $f(t,z)z\ge 0$, in $E \times \mathbb R$ and for every bounded subset $I$, $f(t,z)$ is bounded in $E \times I$. (B) Every bounded solution for $(-1)^n u^{(2n)} + f(t,u) = 0$, in $\mathbb R$, must be constant, provided $f(t,z)z\ge 0$ in $\mathbb R \times \mathbb R$ and for every bounded subset $I$, $f(t,z)$ is bounded in $\mathbb R \times I$.