Parasitoid females may adjust offspring sex allocation according to the number and quality of hosts available. Because in solitary species only one offspring survives per host, already parasitized hosts are of low quality and generally rejected. Superparasitism (i.e., sequential oviposition by the same or different females) results in aggressive interactions and competition for nutritional resources among larvae. We examined variations in the offspring sex ratio of Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae), a solitary ectoparasitoid developing as a hyperparasitoid on the prepupae and pupae of primary aphid parasitoids inside mummified aphids. Mated females produced a female-biased sex ratio of 0.433 (proportion of sons) when caged singly and provided with 12 mummies for 2 h; they parasitized an average of four mummies/h and rarely superparasitized. Superparasitism increased when two females were caged together and provided with 12 mummies, from 1.18 to 1.24 and 1.38 eggs/host parasitized in 1, 2 and 3 h, respectively. The offspring sex ratio became increasingly more female-biased with increase in superparasitism; however, sex ratio variations were not correlated with cohort size. One mated and one unmated female provided with 12 mummies and caged together for 1 h produced a mean cohort sex ratio of 0.645, which differed from the one predicted (0.717) by an algebraic model incorporating the assumptions that both females contribute equal numbers of offspring and that the mated female does not change her offspring-sex allocation strategy. The observed shift in the cohort sex ratio to an increased female-bias indicates that mated females of D. carpenteri change their behaviour when encountering parasitized mummies or a conspecific competitor in the same patch. By depositing fertilized rather than unfertilized eggs, a female can increase the proportion of her daughters among parasitoids competing for a diminishing host supply., Manfred Mackauer, Andrew Chow., and Obsahuje bibliografii
Monoctonus paulensis is a solitary parasitoid of several species of aphids, including the pea aphid, Acyrthosiphon pisum. We evaluated host-instar selection by comparing the parasitoid's preference for the four nymphal instars of the pea aphid, presented two at a time in dichotomous choice tests. Females parasitized more, and laid more eggs in, the relatively smaller aphids among those available. This preference was independent of aphid instar: L1 > L2 > L3 > L4. Preference was not influenced by female size or age. Normal and anaesthetized aphids were accepted equally. The total time needed by a female to capture, position, and parasitize an aphid varied among host instars, with fourth instars requiring nearly twice as much time as first, second, and third instars. The probability of an attacked aphid escaping or avoiding parasitism increased with aphid instar, from ~10% in first and second instars to ~50% in fourth instars. Although fourth-instar pea aphids contain more resources for offspring development than smaller counterparts, it may not be profitable for a female to invest opportunity time in attacks on large aphids.
We examined the influence of offspring mortality caused by hyperparasitism on the secondary sex ratio of Lysiphlebus hirticornis Mackauer, a solitary endoparasitoid of the aphid Metopeurum fuscoviride Stroyan, in the field. Females of L. hirticornis produce pseudo-gregarious broods, which may comprise more than 200 offspring. Hyperparasitoids [mainly Syrphophagus aphidivorus (Mayr)] attacked and killed up to 60% of the primary parasitoids inside mummified aphids, especially late in the season. Hyperparasitized broods were larger than hyperparasitoid-free broods, which suggests that the risk of hyperparasitism increased with mummy density. We tested the hypothesis that mortality caused by hyperparasitism is greater for female than male offspring of L. hirticornis. If mummy quality scales with mummy size, hyperparasitoids should choose the relatively larger over the relatively smaller mummies. In the absence of hyperparasitism, broods of L. hirticornis included approximately two daughters for each son; the sex ratio did not vary with brood size. In hyperparasitized broods, the sex ratio was nearly even. This result indicates that relatively more female offspring (developing in the larger mummies) than male offspring (developing in the smaller mummies) were killed by hyperparasitoids. We propose that sex-differential offspring mortality in L. hirticornis is the result of differences in optimal host choice between the primary parasitoid and the hyperparasitoids.