We prove that a rank ≥3 Dowling geometry of a group H is partition representable if and only if H is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable., František Matúš and Aner Ben-Efraim., and Obsahuje bibliografické odkazy
The hypergeometric distributions have many important applications, but they have not had sufficient attention in information theory. Hypergeometric distributions can be approximated by binomial distributions or Poisson distributions. In this paper we present upper and lower bounds on information divergence. These bounds are important for statistical testing and for a better understanding of the notion of exchangeability.
Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers and generalized minimizers are explicitly constructed from solutions of modified dual problems, not assuming the primal constraint qualification. A generalized Pythagorean identity is presented using Bregman distance and a correction term for lack of essential smoothness in integrands. Results are applied to minimization of Bregman distances. Existence of a generalized dual solution is established whenever the dual value is finite, assuming the dual constraint qualification. Examples of `irregular' situations are included, pointing to the limitations of generality of certain key results.
The simultaneous occurrence of conditional independences among subvectors of a regular Gaussian vector is examined. All configurations of the conditional independences within four jointly regular Gaussian variables are found and completely characterized in terms of implications involving conditional independence statements. The statements induced by the separation in any simple graph are shown to correspond to such a configuration within a regular Gaussian vector.
This work studies the standard exponential families of probability measures on Euclidean spaces that have finite supports. In such a family parameterized by means, the mean is supposed to move along a segment inside the convex support towards an endpoint on the boundary of the support. Limit behavior of several quantities related to the exponential family is described explicitly. In particular, the variance functions and information divergences are studied around the boundary.
The information divergence of a probability measure P from an exponential family E over a finite set is defined as infimum of the divergences of P from Q subject to Q∈E. All directional derivatives of the divergence from E are explicitly found. To this end, behaviour of the conjugate of a log-Laplace transform on the boundary of its domain is analysed. The first order conditions for P to be a maximizer of the divergence from E are presented, including new ones when P is not projectable to E
.