Aldosterone receptor antagonist, spironolactone, has been shown to prevent remodeling of the heart in several models of left ventricular hypertrophy. The aim of the present study was to determine whether the treatment with spironolactone can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) and aortic remodeling in NG-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Four groups of rats were investigated: control, spironolactone (200 mg/kg), L-NAME (40 mg/kg) and L-NAME + spironolactone (in corresponding dosage). Animals were studied after 5 weeks of treatment. The decrease of NO-synthase activity in the LV and kidney was associated with the development of hypertension and LV hypertrophy, with increased DNA concentration in the LV, and remodeling of the aorta in the L-NAME group. Spironolactone prevented the inhibition of NO-synthase activity in the LV and kidney and partially attenuated hypertension and LVH development and the increase in DNA concentration. However, remodeling of the aorta was not prevented by spironolactone treatment. We conclude that the aldosterone receptor antagonist spironolactone improved nitric oxide production and partially prevented hypertension and LVH development without preventing hypertrophy of the aorta in NO-deficient hypertension. The reactive growth of the heart and aorta seems to be controlled by different mechanisms in L-NAMEinduced hypertension., F. Šimko, J. Matúšková, I. L'upták, T. Pinčíková, K. Krajčírovičová, S. Štvrtina, J. Pomšár, V. Pelouch, L'. Paulis, O. Pecháňová., and Obsahuje bibliografii
NG-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension is associated with protein remodeling of the left ventricle. The aim of the study was to show, whether aldosterone receptor blocker spironolactone and precursor of NOproduction L-arginine were able to reverse the protein rebuilding of the left ventricle. Six groups of male Wistar rats were investigated: control 4 (4 weeks placebo), L-NAME (4 weeks L-NAME), spontaneous-regression (4 weeks L-NAME + 3 weeks placebo), spironolactone-regression (4 weeks L-NAME + 3 weeks spironolactone), L-arginineregression (4 weeks L-NAME + 3 weeks arginine), control 7 (7 weeks placebo). L-NAME administration induced hypertension, hypertrophy of the left ventricle (LV), and the increase of metabolic and contractile as well as soluble and insoluble collagenous protein concentration. The systolic blood pressure and relative weight of the LV decreased in all three groups with regression, while the most prominent attenuation of the LVH was observed after spironolactone treatment. In the spontaneous-regression and L-arginine-regression groups the concentrations of individual proteins were not significantly different from the control value. However, in the spironolactone-regression group the concentration of metabolic, contractile and insoluble collagenous proteins remained significantly increased in comparison with the control group. The persistence of the increased protein concentration in the spironolactone group may be related to the more prominent reduction of myocardial water content by spironolactone., F. Šimko, A. Potáčová, V. Pelouch, L'. Paulis, J. Matúšková, K. Krajčírovičová, O. Pecháňová, M. Adamcová., and Obsahuje bibliografii
Factors modulating cardiac susceptibility to ischemia-reperfusion (I/R) are permannetly attracting the attention of experimental cardiology research. We investigated, whether continuous 24 h/day light exposure of rats can modify cardiac response to I/R, NO-synthase (NOS) activity and the level of oxidative load represented by conjugated dienes (CD) concentration. Two groups of male adult Wistar rats were studied: controls exposed to normal light/dark cycle (12 h/day light, 12 h/day dark) and rats exposed to continuous light for 4 weeks. Perfused isolated hearts (Langendorff technique) were exposed to 25 min global ischemia and subsequent 30 min reperfusion. The recovery of functional parameters (coronary flow, left ventricular developed pressure, contractility and relaxation index) during reperfusion as well as the incidence, severity and duration of arrhythmias during first 10 min of reperfusion were determined. The hearts from rats exposed to continuous light showed more rapid recovery of functional parameters but higher incidence, duration and severity of reperfusion arrhythmias compared to controls. In the left ventricle, the NOS activity was attenuated, but the CD concentration was not significantly changed. We conclude that the exposure of rats to continuous light modified cardiac response to I/R. This effect could be at least partially mediated by attenuated NO production., R. Važan, P. Janega, S. Hojná, J. Zicha, F. Šimko, O. Pecháňová, J. Styk, L'. Paulis., and Obsahuje bibliografii
The aim of this study was to an alyze the effect of indapamide and its combination with ACE inhi bitor (captopril) and antioxidant (ProvinolsTM) on both myocardial hypert rophy and fibrosis. Wistar rats were treated with L-NAME (40 mg/kg/day, L); L-NAME plus indapamide (1 mg/kg/day), or captopril (10 mg/kg/day), or ProvinolsTM (40 mg/kg/day), or combination of indapamide with captopril, and indapamide with Provinols TM for 7 weeks. Blood pressure (BP), LV hypertrophy an d fibrosis were determined. The content of collagens type I and III was evaluated morphometrically after picrosirius red staining. L-NAME treatment led to increased BP, LV hypertroph y, total fibrosis and relative content of collagens without th e change in collagen type I/III ratio. Indapamide and captopri l decreased BP, LV hypertrophy and the collagen ratio without affecting total fibrosis, while ProvinolsTM reduced BP, the collagen ratio and fibrosis without affecting LV hypertrophy. The combinations decreased all the parameters. Decrease of LV hypertrophy was achieved by drugs with the best reducing effect on BP, fibrosis reduction was reached by the antioxidant treatment with only partial effect on BP. Thus, the combination of an tihypertensive and antioxidant treatment may represent a powerful tool in preventing myocardial remodeling induced by hypertension., L. Hlavačková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Endothelial dysfunction may be considered as the interstage between risk factors and cardiovascular pathology. An imbalance between the production of vasorelaxing and vasoconstricting factors plays a decisive role in the development of hypertension, atherosclerosis and target organ damage. Except vasorelaxing and antiproliferative properties per se, nitric oxide participates in antagonizing vasoconstrictive and growth promoting effects of angiotensin II, endothelins and reactive oxygen species. Angiotensin II is a potent activator of NAD(P)H oxidase contributing to the production of reactive oxygen species. Numerous signaling pathways activated in response to angiotensin II and endothelin-1 are mediated through the increased level of oxidative stress, which seems to be in casual relation to a number of cardiovascular disturbances including hypertension. With respect to the oxidative stress, the NO molecule seems to be of ambivalent nature. On the one hand, NO is able to reduce generation of reactive oxygen species by inhibiting association of NAD(P)H oxidase subunits. On the other hand, when excessively produced, NO reacts with superoxides resulting in the formation of peroxynitrite, which is a free radical deteriorating endothelial function. The balance between vasorelaxing and vasoconstricting substances appears to be the principal issue for the physiological functioning of the vascular bed., O. Pecháňová, F. Šimko., and Obsahuje bibliografii