Artificial Neural Networks are commonly used in pattern classification, function approximation, optimization, pattern matching, machine learning and associative memories. They are currently being an alternative to traditional statistical methods for mining data sets in order to classify data. Artificial Neural Networks are well-established technology for solving prediction and classification problems, using training and testing data to build a model. However, the success of the networks is highly dependent on the performance of the training process and hence the training algorithm. In this paper, we applied the Artificial Bee Colony (ABC) Optimization Algorithm on training feed-forward neural networks to classify different data sets which are widely used in the machine learning community. The performance of the ABC algorithm is investigated on benchmark classification problems from classification area and the results are compared with the other well-known conventional and evolutionary algorithms. The results indicate that ABC algorithm can efficiently be used on training feed-forward neural networks for the purpose of pattern classification.
Nowadays, remote sensing technology is being used as an essential tool for monitoring and detecting oil spills to take precautions and to prevent the damages to the marine environment. As an important branch of remote sensing, satellite based synthetic aperture radar imagery (SAR) is the most effective way to accomplish these tasks. Since a marine surface with oil spill seems as a dark object because of much lower backscattered energy, the main problem is to recognize and differentiate the dark objects of oil spills from others to be formed by oceanographic and atmospheric conditions. In this study, Radarsat-1 images covering Lebanese coasts were employed for oil spill detection. For this purpose, a powerful classifier, Artificial Neural Network Multilayer Perceptron (ANN MLP) was used. As the original contribution of the paper, the network was trained by a novel heuristic optimization algorithm known as Artificial Bee Colony (ABC) method besides the conventional Backpropagation (BP) and Levenberg-Marquardt (LM) learning algorithms. A comparison and evaluation of different network training algorithms regarding reliability of detection and robustness show that for this problem best result is achieved with the Artificial Bee Colony algorithm (ABC).