Spermiogenesis in the amphilinidean cestode Amphilina foliacea (Rudolphi, 1819) was examined using transmission electron microscopy. The orthogonal development of the two flagella is followed by a flagellar rotation and their proximodistal fusion with the median cytoplasmic process. This process is accompanied by extension of both the mitochondrion and nucleus into the median cytoplasmic process. The two pairs of electron-dense attachment zones mark the lines where the proximodistal fusion of the median cytoplasmic process with the two flagella takes place. The intercentriolar body, previously undetermined in A. foliacea, is composed of three electron-dense and two electron-lucent plates. Also new for this species is the finding of electron-dense material in the apical region of the differentiation zone at the early stage of spermiogenesis, and the fact that two arching membranes appear at the base of the differentiation zone only when the two flagella rotate towards the median cytoplasmic process. The present data add more evidence for a close relationship between the Amphilinidea and the Eucestoda.
The fine structure of the ovary, ovicapt, oviduct, fertilisation canal, vitelline ducts, vitelline reservoir, ovovitelline duct, ootype and Mehlis' gland, and proximal, middle and distal parts of the uterus of the spathebothriidean cestode, Cyathocephalus truncatus (Pallas, 1781), from salmoniform fish, has been studied for the first time by transmission electron microscopy (TEM). Emphasis was given to characteristics which might shed light on the unclarified phylogenetic position of spathebothriideans, belonging among the most basal tapeworms (Eucestoda). New for cestodes is the finding of a multinucleate cell that plugs the ovicapt lumen. The morphology of the proximal part of the oviduct resembles that of the pseudophyllidean tapeworm Diphyllobothrium latum. After fertilisation in the fertilisation canal, vitellocytes of C. truncatus become associated with fertilized oocytes in the ovovitelline duct. Only one type of Mehlis' gland secretory cell is present. The eggs with electron-dense eggshells containing large pores first appear in the proximal part of the uterus. The middle portion of the uterus has well-developed uterine glands. The distal portion of the uterus has apical microtriches. Ultrastructural data on the female genital system of C. truncatus are compared and discussed with those for other cestodes. However, on the basis of available ultrastructural data it is not possible to conclude whether the Spathebothriidea are phylogenetically closer to the Caryophyllidea or to the Pseudophyllidea.
Fine structure of the vas efferens, vas deferens, ejaculatory duct with accessory glands and vagina with seminal receptacle is described in the spathebothriidean tapeworm, Cyathocephalus truncatus (Pallas, 1781) Kessler, 1868. The numerous well-developed prostate glands are characterised by having secretory granules with an electron-dense core surrounded by a matrix of lower electron density. Coalescence of the outer part of the granules with each other takes place in the terminal end of the secretory ducts. The position of prostate glands around the proximal part of the cirrus pouch and terminating in the ejaculatory duct is a characteristic feature of the Spathebothriidea. Up to 20 closely arranged muscle layers make up the muscular cirrus pouch wall with 4 well-developed muscular layers in the ejaculatory duct and cirrus. Both the cirrus and the vagina are covered with the same uniform cone-shaped microtriches. The vagina has an extensive seminal receptacle. All of these structures are well-adapted to insure successful sperm transfer involving ejaculation and storage, probably for both self- and cross-insemination. Cyathocephalus truncatus has a cirrus similar to that of the monozoic, progenetic caryophyllidean, Archigetes sieboldi and well-developed prostate glands like those of the polyzoic pseudophyllidean, Diphyllobothrium latum. The ultrastructural aspects of the male and female reproductive system of C. truncatus are compared with those of other tapeworms.
A comparative study of the scolex hook morphology of five species of tapeworms of the genus Triaenophorus Rudolphi, 1793 (Cestoda: Pseudophyllidea), parasites of pikes (Esox lucius L. and E. reichertii Dybowski) in the Palaearctic Region, was carried out. Measurements of scolex hooks of 81 plerocercoids and 492 adults from different hosts and regions were compared using basic statistics and forward stepwise linear discriminant analysis. The shape of the scolex and that of tridental hooks were found to be suitable only for differentiation of the taxa with a similar shape of hooks, i.e. Triaenophorus nodulosus (Pallas, 1781) from T. amurensis Kuperman, 1968, and T. crassus Forel, 1868 from T. meridionalis Kuperman, 1968 and T. orientalis Kuperman, 1968, respectively. In contrast, discriminant analysis did not enable reliable separation of specimens of individual taxa of these two morphological groups due to high intraspecific variability and overlaps between species. This was reflected in low classification efficiencies (average 83%) of all species of the T. crassus group, whereas all T. amurensis specimens were misidentified as T. nodulosus. The new data also considerably enlarge (up to twofold) the size range of the species described by Kuperman in 1968, which invalidates suitability of the most important discriminant characteristic, the width of the basal plate, for delimitation of Triaenophorus species. Based on the present data, all Kuperman's taxa are considered to represent only distinct geographical populations of T. nodulosus and T. crassus. As a result, T. amurensis is synonymized with T. nodulosus, whereas T. orientalis is considered to be a synonym of T. crassus. Previous synonymisation of T. meridionalis with T. crassus, first proposed by Dubinina (1987), is also accepted.
Two fish cestodes, the little-known Eubothrium fragile (Rudolphi, 1802) and E. rugosum (Batsch, 1786), the type species of the genus Eubothrium Nybelin, 1922, are redescribed on the basis of new material from twaite shad, Alosa fallax (Lacépède, 1803), from England and burbot, Lota lota (Linnaeus, 1758), from Russia, respectively. The tapeworms are compared with two other species of the genus, E. crassum (Bloch, 1779) and E. salvelini (Schrank, 1790), common parasites of salmonid fish in the Holarctic. The most notable differential characters are the size and the shape of the scolex (smaller and oval in E. fragile), the shape of the apical disc (four or more indentations in E. crassum), the number and size of the testes (the largest and least numerous in E. rugosum), and the position and size of the vitelline follicles (almost entirely cortical in distribution in E. fragile and E. crassum versus largely medullary in E. rugosum and E. salvelini). A comparison of species has also shown the morphological similarity of the freshwater species (E. rugosum and E. salvelini) on one hand and those of marine origin, E. fragile and E. crassum, on the other, with the latter species occurring also in fresh waters. A key to the identification of the species studied is also provided.
The ultrastructure and chemical composition of the proboscis hooks and surrounding tegument of Acanthocephalus lucii (Müller, 1776), a parasite of European perch, Perca fluviatilis Linnaeus, were examined using scanning (SEM) and transmission (TEM) electron microscopy and X-ray microanalysis (EDXA). The blade of middle hooks consists of three layers: an outer homogeneous layer, an inner heterogeneous layer and a central core. TEM observation revealed the presence of hollow tubes, which spaced the central core; fibrous inner hook layer surrounded by an electron-dense margin and the basal tegumental layer filled with electron-dense bodies and outer layer. We found for the first time that the so-called ''epidermal covering'' surrounding of the exposed hook blade (outer hook layer) is a modified striped portion of the tegumental layer and there are no special contact sites between these two morphologically different structures, i.e. striped layer of the syncytial tegument and following proper outer hook layer, which is a homogeneous, moderately electron-dense layer of ~0.3 µm in thickness. The hook root is embedded into subtegumental fibrous layer. X-ray microanalysis of both the surface and internal parts of A. lucii hooks demonstrated the presence of calcium, magnesium, phosphorus and sulphur. The highest concentration of sulphur was recorded at the tip of hooks, whereas the middle part of the hooks was most rich in calcium, phosphorus and magnesium. The proximal part of the hooks contained lower concentrations of sulphur, calcium and phosphorus. In the proboscis tegument, only two elements, calcium and silicon, were found. The differences observed in the chemical composition of the hook ''epidermal covering'' and the proboscis tegument support our ultrastructural findings that the hook tegumental covering is a modified structure compared with that of the general proboscis tegument.
Ultrastructural characteristics of progenetic and monoxenic Archigetes sieboldi Leuckart, 1878 from the oligochaete Limnodrilus hoffmeisteri Claparède are described. Our observations demonstrate that progenetic Archigetes sieboldi shares characteristics of both larval (progenetic) and adult stages. The primary larval characteristics are: the presence of a cercomer; a surface filamentous coat covering the whole worm; the presence of the penetration glands and the absence of tegumental ones; wide sarcoplasmic processes connecting the circular and longitudinal external tegumental muscles; the absence of the dense homogenous zone of the basal lamina beneath the epithelial cytoplasm of all reproductive organs and ducts; non-functional gonopores; and an orthogonal plan of nervous system with three pairs of longitudinal nerve trunks. The principle adult characteristics are: oogenesis, spermiogenesis and vitellogenesis that produce fertilized eggs; the uterine glands; a well-developed longitudinal tegumental muscle layer between tegumental cytons; and the presence of different microtriches. As a result of this progenetic development there has been a secondary reduction in the life cycle of A. sieboldi. It is postulated that a similar process of progenesis may have played a major role in the early evolution of the Caryophyllidea by first appearing in a plerocercoid stage of an ancestral strobilate cestode from fish.
An ultrastructural study of the ovarian follicles and their associated oviducts of the cestode Gyrocotyle urna Grube et Wagener, 1852, a parasite from the spiral valve of the rabbit fish, Chimaera monstrosa L., was undertaken. Each follicle gives rise to follicular oviduct, which opens into one of the five collecting ducts, through which pass mature oocytes. These collecting ducts open into an ovarian receptacle which, in turn, opens via a muscular sphincter (the oocapt) to the main oviduct. The maturation of oocytes surrounded by the syncytial interstitial cells within the ovarian follicles of G. urna follows a pattern similar to that in Eucestoda. The ooplasm of mature oocytes contain lipid droplets (2.0 × 1.8 µm) and cortical granules (0.26 × 0.19 µm). The cytoplasm of primary and secondary oocytes contains centrioles, indicating the presence of the so-called ''centriole cycle'' during oocyte divisions. A morphological variation between different oviducts was observed. The luminal surface of the follicular and the collecting oviducts is smooth. The zones of the septate junctions are present within the distal portion of the net-like epithelial wall of the collecting ducts close to the ovarian receptacle. The syncytial epithelial lining of the ovarian receptacle, oocapt and main oviduct is covered with lamellae and cilia. Cortical granules secreted from mature oocytes occur freely within the lumen of the main oviduct that functions as a fertilisation canal. A division of the ovary into separated parts with their own collecting ducts as that typical of Gyrocotyle has been observed in neodermates, basal monogenean family Chimaericolidae, and Neoophora (some Proseriata and Fecampiidae). Ultrastructural data thus reveal several unique morphological characteristics of gyrocotylideans, the most basal taxon of tapeworms (Cestoda).
The surface structures and gland cells of the posterior rosette organ of Gyrocotyle urna Grube et Wagener, 1852, a member of the group presumed to be the most basal of the tapeworms (Cestoda: Gyrocotylidea), was studied by scanning electron and transmission electron microscopy. Surface structures on the outer (oriented away from the intestinal wall) and inner (in contact with the intestinal wall) rosette surfaces differ from each other and represent a transitional form between microvilli and microtriches typical of tapeworms (Eucestoda). The inner surface of the rosette possesses numerous glands. On the basis of the size and electron-density of their secretory granules, three types of unicellular gland cells can be distinguished. The least common type (Type I) is characterized by the production of small, round, electron-dense granules of about 0.3 µm in diameter, whereas another type of secretion (Type II) is formed from homogenous, moderately electron-dense, spheroidal granules of about 0.7 µm in diameter. The most common type of glands (Type III) is recognized by a secretion comprising large, elongate, electron-dense granules of about 1 µm long and 0.5 µm broad. The secretory granules of the three types of the glands are liberated by an eccrine mechanism and the gland ducts open via small pores on the inner rosette surface. The complex of secretory glands of the posterior rosette of G. urna is similar to those in the anterior attachment glands of monogeneans (as opposed to the types of glands present in other helminth groups). However, the tegumental surface structures of Gyrocotyle are supporting evidence for the relationship between the Gyrocotylidea and Eucestoda.
The vitellogenesis of Paraechinophallus japonicus (Yamaguti, 1934), the first pseudophyllidean tapeworm of the family Echinophallidae studied using transmission electron microscope, is described on the basis of ultrastructural observations of specimens from the benthopelagic fish Psenopsis anomala (Temminck et Schlegel, 1844) (Perciformes: Centrolophidae). The process of vitellogenesis in P. japonicus follows the same general pattern observed in other tapeworms. Five stages of vitellocyte development have been distinguished. The first stage corresponds to immature cells containing ribosomes and mitochondria. The second stage of development is characterized by the appearance of granular endoplasmic reticulum and Golgi complexes, formation of shell globules and lipid droplets at the periphery of the cell cytoplasm. Vitellocyte of the third stage presents accumulation of shell globules and lipid droplets. During the fourth stage, shell globule clusters are formed, and lipid droplets and rosettes of α-glycogen are accumulated. Mature vitelline cells are characterized by a great number of lipid droplets with glycogen in the centre of the cytoplasm, whereas shell globule clusters are situated more peripherally. The interstitial tissue of vitelline follicles of P. japonicus is syncytial with long cytoplasmic projections extending between vitelline cells. The presence of a large amount of lipid droplets in the vitelline cytoplasm within the eggs of P. japonicus may be related to egg accumulation in the uterine sac.