A classical result in number theory is Dirichlet’s theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly k prime factors for k>1. Building upon a proof by E.M.Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree n 6 x with k prime factors such that a fixed quadratic equation has exactly 2k solutions modulo n., Neha Prabhu., and Seznam literatury