Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.
We are considering a two-stage optimal scheduling problem, which involves two similar projects with the same starting times for workers and the same deadlines for tasks. It is required that the starting times for workers and deadlines for tasks should be optimal for the first-stage project and, under this condition, also for the second-stage project. Optimality is measured with respect to the maximal lateness (or maximal delay) of tasks, which has to be minimized. We represent this problem as a problem of tropical pseudoquadratic optimization and show how the existing methods of tropical optimization and tropical linear algebra yield a full and explicit solution for this problem.
The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to "classically'' separate by hyperplanes in max-min convex geometry.
We consider the two-sided eigenproblem <span class="tex">A * x = λ * B * x</span> over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem