Circadian oscillations in biological variables in mammals are controlled by a central pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus which coordinates circadian oscillators in peripheral tissues. The molecular clockwork responsible for this rhythmicity consists of several clock genes and their corresponding proteins that
compose interactive feedback loops. In the SCN, two of the genes, Per1 and Per2, show circadian rhythmicity in their expression and protein production. This SCN rhythmicity is modified by the length of daylight, i.e.
the photoperiod. The aim of the present study was to find out whether profiles of PER1 and PER2 proteins in peripheral organs are also affected by the photoperiod. Rats were maintained under a long photoperiod with 16 h of light and 8 h of darkness per day (LD 16:8) and under a short, LD 8:16, photoperiod. The PER1 and PER2 daily profiles were measured in peripheral organs by Western blotting. The photoperiod affected significantly the PER1 profile in livers and the PER2 profile in lungs and hearts. In lungs, PER2 in the cytoplasmic, but not in the nuclear fraction, was affected significantly. The effect of the photoperiod on PER1 profiles in peripheral organs appears to differ from that in the SCN.