There are four kinds of scalars in the n-dimensional pseudo-Euclidean geometry of index one. In this note, we determine all scalars as concomitants of a system of m ≤ n linearly independent contravariant vectors of two so far missing types. The problem is resolved by finding the general solution of the functional equation F(Au 1 , Au 2 , . . . , Au m ) = ϕ (A) · F(u 1 , u 2 , . . . , u m ) using two homomorphisms ϕ from a group G into the group of real numbers R0 = (R \ {0} , ·).