It has been shown that endothelium-derived nitric oxide (NO) plays an important role in regulation of vascular tone in the prenatal and early postnatal period. The aim of this paper was to determine the reactivity and accompanying structural changes in thoracic aorta from 4-week-old spontaneously hypertensive rats (SHR) and rats with hereditary
hypertriglyceridemia (hHTG) in comparison with age-matched normotensive controls. For functional studies thoracic aorta was excised, cut into rings and mounted in organ baths for measurement of isometric contractile force. For morphological studies cardiovascular system of rats was perfused with glutaraldehyde fixative (at 100 mm Hg) via cannula placed in the left ventricle. Morphological changes of thoracic aorta were measured using light microscopy. Systolic blood pressure (SBP) in SHR (98±1 mm Hg) did not significantly differ from that of age-matched control rats (95±4 mm Hg), but was slightly increased in hHTG rats (110±2 mm Hg, P<0.05). Heart weight/body weight ratio was higher in SHR and hHTG rats than in control group indicating the hypertrophy of the heart in both models of hypertension. Endothelium-dependent relaxation of aorta induced by acetylcholine was preserved in all groups and did not differ from that in control normotensive rats. The maximal isometric contraction of thoracic aorta to noradrenaline (NA) was reduced in hypertensive groups and the concentration-response curves to NA were shifted to the right indicating increased sensitivity of smooth muscle to NA. The values of wall thickness and cross sectional area as well as inner diameter of thoracic aorta in SHR and hHTG rats were significantly decreased in comparison to control groups. Endothelial dysfunction seems to be absent in all young rats before development of hypertension. In conclusion, our observations indicate that in early stage of experimental hypertension NO-dependent relaxation is preserved so that putative impairment of this function provides no significant pathogenic contribution to the onset of hypertension in these two experimental models.
Hypertriglyceridemia and hypertension seem to be very important cardiovascular risk factors. The Prague hereditary hypertriglyceridemic (hHTG) rat was developed as a model of human hypertriglyceridemia. It was demonstrated that these rats are not obese, they are hypertensive and insulin resistant and they have some disturbances in glucose
metabolism. Several QTLs were identified for blood pressure, its particular components (dependent on major vasoactive systems) and plasma triglycerides throughout the genome of hHTG rats by using of F2 hybrids strategy. It is evident that hHTG rats are a suitable model for the study of metabolic disturbances in relation to blood pressure as well as for the
search of genetic determinants of these abnormalities. Numerous abnormalities of blood pressure regulation as well as alterations in the structure and function of cardiovascular apparatus (heart, conduit and resistance arteries) were found in hHTG rats. A special attention was paid to possible changes in the efficiency of various vasoactive systems such as
nitric oxide, renin-angiotensin-aldosterone system and sympathetic nervous system, which seem to contribute substantially to cardiovascular and/or metabolic abnormalities observed in Prague hereditary hypertriglyceridemic rats.