Antibody-mediated rejection (ABMR) is a major obstacle to the long-term success in kidney transplantation. Diagnosis of ABMR is determined according to the internationally recognized Banff criteria. However, a significant proportion of patients does not meet all the defined criteria, and the outcome of such cases remains poorly understood. The histology of ABMR frequently lacks sensitivity and specificity. More importantly, mixed forms of ABMR and T cell-mediated rejection as well as findings of nonspecific injury are common in clinical settings. Donor-specific anti-HLA antibodies (DSA) are detectable only in half of the ABMR cases by histology. Prognostic role of non-HLA antibodies against various endothelial proteins has been discussed. Antibody independent NK cell activation reflecting killer-cells’ inhibitory receptor incompatibility is suggested in microvascular inflammation in DSA negative patients. Molecular assessment of ABMR has been prioritized to overcome high interobserver variability and improve diagnostics in mixed forms of rejections and in DSA negative cases. Finally, donor-derived cell-free DNA detected in a recipient’s peripheral blood sample has been proposed as a noninvasive marker for diagnosis of graft rejection, and thus might serve as a liquid biopsy in the near future. Despite all achievements, diagnosing ABMR in kidney allografts remains to be a challenge in a significant number of cases.
Peripheral blood monocytes, which serve as precursors for tissue macrophages and dendritic cells (DC), play a key role in the immune response to kidney allograft, reparation processes and homeostasis regulation. In this prospective study, we used multicolor flow cytometry to monitor the phenotypic patterns of peripheral monocytes in subjects with uncomplicated outcomes and those with acute rejection. We found a reciprocal increase in the proportion of "classical monocytes" (CD14+CD16-) along with a decline in pro-inflammatory "intermediary" (CD14+CD16+) and "non-classical" (CD14lowCD16+) monocytes in subjects with normal outcomes. In subjects with acute rejection, we observed no reduction in "intermediary" monocytes and no increase in "classical" monocytes. Patients with uncomplicated outcomes exhibited downregulated HLA-DR in all three monocyte subpopulations. However, non-classical monocytes were unaffected in subjects with acute rejection. Expression of CD47 was downregulated after transplantation, while patients with antibody-mediated rejection and donor-specific antibodies showed higher pre-transplant values. In monocytes isolated at the time of biopsy, CD47 expression was higher in individuals with acute rejection compared to patients with normal outcomes one year post-transplant. Expression of CD209 (DC-SIGN) and the proportion of CD163+CD206+ subpopulations were upregulated during the first week after kidney transplantation. CD209 was also upregulated in samples taken on the day of biopsy confirming acute rejection. Our data demonstrate that kidney allograft transplantation is associated with phenotypic changes in peripheral blood monocytes during acute rejection., Veronika Švachová, Lenka Krupičková, Marek Novotný, Martina Fialová, Kristýna Mezerová, Eva Čečrdlova, Věra Lánská, Antonij Slavčev, Ondřej Viklický, Ilja Stříž., and Obsahuje bibliografii
M2 macrophages expressing CD163 are known to suppress immune responses but have been also found in biopsies of patients with chronic kidney allograft injury associated with interstitial fibrosis. The aim of our study was to evaluate the expression of CD163 in blood monocytes, precursors of tissue macrophages, in kidney allograft recipients with uncomplicated outcome (n=94) compared with those developing acute rejection (n=44). Blood samples were collected before the transplantation and at 1 week, 1 month and 1 year. The expression of CD163 increased during the first week after the transplantation not only in classical (CD14+CD16- ) but also in intermediate (CD14+CD16+) and nonclassical (CD14lowCD16+) monocytes in all patients regardless of their rejection status. In patients developing acute rejection, higher pre-transplant expression of CD163 on blood monocytes was found. In vitro experiments confirmed strong induction of membrane CD163 on monocytes together with CD206 (an alternative marker of M2 macrophages) in response to IL-10. We assume from our data that dramatic upregulation of CD163 by peripheral blood monocytes may have a pathophysiological role in early phases after kidney allograft transplantation and high pre-transplant expression of CD163 on blood monocytes might be involved in events leading to acute rejection., Lenka Čurnová, Kristýna Mezerová, Veronika Švachová, Martina Fialová, Marek Novotný, Eva Čečrdlová, Ondřej Viklický, Ilja Stříž., and Obsahuje bibliografii