A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let S be a nontrivial finite regular linear space and G ≤ Aut(S). Suppose that G is extremely primitive on points and let rank(G) be the rank of G on points. We prove that rank(G) ≥ 4 with few exceptions. Moreover, we show that Soc(G) is neither a sporadic group nor an alternating group, and G = PSL(2, q) with q + 1 a Fermat prime if Soc(G) is a finite classical simple group., Haiyan Guan, Shenglin Zhou., and Obsahuje seznam literatury