We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian G_{2} (\mathbb{C}^{m+2}). In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in G_{2} (\mathbb{C}^{m+2})satisfying such conditions., Eunmi Pak, Juan de Dios Pérez, Young Jin Suh., and Obsahuje seznam literatury