Over last decades, several studies have been focused on
short-term high light stress in lichens under laboratory conditions. Such studies reported a strong photoinhibition of photosynthesis accompanied by a partial photodestruction of PSII, involvement of photoprotective mechanisms, and resynthetic processes into gradual recovery. In our paper, we applied medium [800 μmol(photon) m-2 s-1] light stress to induce negative changes in PSII funcioning as well as pigment and glutathione (GSH) content in two Antarctic fruticose lichen species. Chlorophyll (Chl) fluorescence parameters, such as potential and effective quantum yield of photosynthetic processes and fast transients (OJIP) recorded during high light exposition and recovery, revealed that Usnea antarctica was less susceptible to photoinhibition than U. aurantiaco-atra. This might be supported by a more pronounced high light-induced reduction in Chl a and b contents in U. aurantiaco-atra compared with U. antarctica. In both experimental species, total GSH showed an initial increase during the first 30-40 min of high light treatment followed by a decrease (60 min) and an increase during dark recovery. Full GSH recovery, however, was not finished in U. aurantiaco-atra even after 5 h indicating lower capacity of photoprotective mechanisms in the species. OJIP curves showed high light-induced decrease in both species, however, the recovery of the OJIPs shape to pre-photoinhibitory values was faster and more apparent in U. antarctica than in U. aurantiaco-atra. The results are discussed in terms of sensitivity of the two species to photoinhibition and their photosynthetic performance in natural environment., K. Balarinová, M. Barták, J. Hazdrová, J. Hájek, J. Jílková., and Obsahuje bibliografii
Changes in the chlorophyll (Chl) and carotenoid (Car) contents and photosynthetic activity of leaves of three-year-old maple trees were studied under an extremely high irradiance (HI) (5 000 and 7 000 pmol m-2 s‘*) and subsequent low irradiance (LI) (10 pmol m-2 s‘*). Speciál attention was paid to a possible linear correlation between zeaxanthin (z) accumulation and the decrease in variable Chl fluorescence (ratio Fy/FnO during photoinhibitory treatment. Hl-induced violaxanthin (v) transformation into z was a fast one-step response proceeding within 2-5 min. Changes in the Chl a and b contents or in non-xanthophyll cycle Car were either not observed (30 min at 5 000 pmol m*2 s‘i) or a slight decline of the Chl a, lutein, 3-carotene and z contents only occurred at prolonged exposure (60 min at 7 000 pmol m'^ s'i)- Photosynthetic activity measured via the ratios (Fy/F^, Fy/F^, Rfj 690, Rfj 735) sank during this treatment to a much higher extent at 7 000 than at 5 000 pmol m'^ s'*. Ratios Fy/F<„ Rfd 690 and Rfj 735 proved to be better indicators of photoinhibition with a larger amplitudě ťhan the ratio Fy/F,„. Unlike literatuře reports, no linear correlation was found between Hl-induced decrease of fluorescence ratios and the z accumulation. Decrease of the fluorescence ratios appears to be biphasic in nátuře: fast initial fall which parallels the z formation is followed by a phase when ratios Fy/F^,, Fy/F^,, Rj^ 690 and Rf^ 735 sink further without any changes in the z pool. Regeneration of photosynthetic activity under LI also proceeded in two steps; a relatively fast increase in ratios with little or no changes in the z pool followed by a slow many hours' restoring of the former fluorescence ratios, paralleled by the z transformation into v. The back-reaction of z to v under LI was increasingly retarded with higher irradiance. Z formation and decrease in the fluorescence ratios are thus probably two Hl-induced processes which may be mutually independent.
The effects of phosphate concentration on plant growth and photosynthetic performance were examined in leaves of Zizania latifolia. Plants were grown for four weeks in a solution containing 0, 0.16, 0.64, and 2.56 mM orthophosphate. The results showed that the highest net photosynthetic rate (P N) was achieved at 0.64 mM orthophosphate, which corresponded to the maximum content of organic phosphorus in leaves. Low phosphorus (low-P) content in the culture solution inhibited plant growth, affecting plant height, leaf length, leaf number, tiller number, and fresh mass of leaf, sheath, culm, root, and total plant. In addition, we observed that low-P (0.16 mM) did not hinder the growth of roots but increased the root:shoot ratio, and significantly decreased the chlorophyll content, P N, stomatal conductance, and transpiration rate, but increased the intercellular CO2 concentration. Additionally, low-P significantly decreased the maximum carboxylation rate of Rubisco, the maximum rate of ribulose-1,5-bisphosphate regeneration, the effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and electron transport rate, but increased the nonphotochemical quenching. However, the maximal quantum yield of PSII photochemistry was not significantly affected by low-P. High phosphorus (2.56 mM) caused only a slight decrease in gas-exchange parameters. Therefore, the decrease in growth of P-deficient Z. latifolia plants could be attributed to the lowered photosynthetic rate., N. Yan, Y.-L. Zhang, H.-M. Xue, X.-H. Zhang, Z.-D. Wang, L.-Y. Shi, D.-P. Guo., and Obsahuje seznam literatury
In this study, we investigated the effects of Nw -nitro-L-arginine (L-NNA) on arterial blood pressure (BP), plasma noradrenaline (NA) and adrenaline (A) levels and angiotensin-converting enzyme (ACE) activity. L-NNA was applied with tap water (1 mg/ml) from the 3rd to the 8th week of age (group L-NNA1). In Experiment 1, long-term L-NNA application increased BP compared to the control group (group C1) (L-NNA1 = 131.4 ± 6.3, n=6; C1= 82.7 ± 4.7 mm Hg, n=7) but decreased plasma noradrenaline and adrenaline levels and ACE activity (NA levels: C1 = 15.5 ± 0.8, n=7; L-NNA1= 8,6 ± 0.5 ng/ml, n=7; A levels: C1 = 15.5 ± 0.8, n=7; L-NNA1 = 6.0 ± 0.5 ng/ml, n=7; ACE activities: C1= 87.3 ± 3.1, n=6; L-NNA1 = 46.2 ± 1.9 U/l, n=5). On the other hand, in Experiment 2 (carried out under the same conditions and in age-matched chickens), blood pressure, plasma noradrenaline levels and ACE activity were found to differ in the control group (C2) (BP=141.4 ± 15.5 mm Hg, n=7; NA =1.1 ± 0.4 ng/ml, n=7; ACE = 57.2 ± 5.3 U/l, n=7) as compared to C1, while plasma adrenaline levels were similar. In this series, long-term L-NNA application (group L-NNA2) did not change the BP, but surprisingly increased noradrenaline and ACE values (values of L-NNA2: BP = 165.7 ± 15.6 mm Hg, n=7; NA = 9.3 ± 1.3 ng/ml, n=8; ACE = 149.4 ± 16 U/l, n=8) while decreasing plasma adrenaline levels. L-arginine addition to L-NNA treatment completely reversed plasma noradrenaline and ACE activity values. These results indicate the modulatory activity of an L-arginine-NO pathway on adrenaline release as well as on the renin-angiotensin system in chickens., H. E. Aksulu, I. Bingöl, F. Karatas, H. Sagmanligil, B. Üstündag., and Obsahuje bibliografii
We measured plasma concentrations, adipose tissue and placental mRNA expression of hepatokines fetuin A, fetuin B and fibroblast growth factor 21 (FGF21) in 12 healthy pregnant women (P group), 12 pregnant women with gestational diabetes (GDM) and 10 healthy non-pregnant women (N group) to explore their potential role in the etiopathogenesis of GDM. GDM and P group had comparable BMI, C-reactive protein (CRP) and glycated hemoglobin levels while IL-10 and TNF-α levels were higher in GDM group. Fetuin A and fetuin B levels were higher in pregnancy as compared to N group and decreased after delivery with no apparent influence of GDM. In contrast, the pattern of changes of circulating FGF21 levels differed between GDM and P group. Fetuin A concentrations positively correlated with CRP, TNF-α mRNA expression in adipose tissue and IL-6 mRNA expression in placenta. Fetuin B positively correlated with CRP. FGF21 levels correlated positively with IFN-γ mRNA in adipose tissue and inversely with IL-8 mRNA in the placenta. Taken together, fetuin A and fetuin B levels were increased during pregnancy regardless of the presence of GDM. In contrast, FGF21 patterns differed between healthy pregnant women and GDM patients suggesting a possible role of this hepatokine in the etiopathogenesis of GDM., P. Šimják, A. Cinkajzlová, K. Anderlová, J. Kloučková, H. Kratochvílová, Z. Lacinová, P. Kaválková, H. Krejčí, M. Mráz, A. Pařízek, M. Kršek, M. Haluzík., and Obsahuje bibliografii
Hypoxic pulmonary vasoconstriction (HPV) occurs in smooth muscle cells (SMC) from small pulmonary arteries (SPA) and is accompanied by increases in free cytoplasmic calcium ([Ca2+]i) and cytoplasmic pH (pHi). SMC from large pulmonary arteries (LPA) relax during hypoxia, and [Ca2+]i and pHi decrease. Increases in pHi and [Ca2+]i in cat SPA SMC during hypoxia and the augmentation of hypoxic pulmonary vasoconstriction by alkalosis seen in isolated arteries and lungs suggest that cellular mechanisms, which regulate inward and outward movement of Ca2+ and H+, may participate in the generation of HPV. SMC transport systems that regulate pHi include the Na+-H+ transporter which regulates intracellular Na+ and H+ and aids in recovery from acid loads, and the Na+-dependent and Na+-independent Cl-/HCO3- transporters which regulate intracellular chloride. The Na+-dependent Cl-/HCO3- transporter also aids in recovery from acidosis in the presence of CO2 and HCO3-. The Na+-independent Cl-/HCO3- transporter aids in recovery from cellular alkalosis. The Na+-H+ transporter was present in SMC from SPA and LPA of the cat, but it seemed to have little if any role in regulating pHi in the presence of CO2 and HCO3-. Inhibiting the Cl-/HCO3- transporters reversed the normal direction of pHi change during hypoxia, suggesting a role for these transporters in the hypoxic response. Future studies to determine the interaction between pHi, [Ca2+]i and HPV should ascertain whether pHi and [Ca2+]i changes are linked and how they may interact to promote or inhibit SMC contraction., J. A. Madden, P. A. Keller, J. G. Kleinman., and Obsahuje bibliografii
CO2 (40, 200, 400 loM) was added to the root systém of 10-d-old pea plants (Pisum sativum L. cv. Ran). The Co2'''-excess caused a reduction in the plant fresh and diy masses and water and chlorophyll contents. The rates of photosynthesis and transpiration decreased, while proline content and stomata resistance increased. The dramatic effect of Co2+-toxicity was expressed both in an inhibition of ribulose 1,5- bisphosphate (RuBP) carboxylase activity and a stimulation of RuBP-oxygenase and phosphoenolpyruvate carboxylase activities on the 4‘h day of cnltivation of plants in a solution of 400 pM C6^*.
The role of the cortico-tectal pathways in the processing of auditory signals was investigated by recording the click-evoked responses and extracellular multiple unit activity in the inferior colliculus (IC) after functional ablation of the auditory cortex (AC) by local intracortical application of a sodium channel blocker, tetrodotoxin (TTX). Click-evoked IC responses (IC-ER) and multiple unit activity in response to tone bursts were recorded with implanted electrodes in the IC of rats lightly anaesthetized with xylazine. Neural activity was recorded before and after the application of TTX into the ipsilateral auditory cortex (AC) through three implanted cannulas in a total dose of 30 ng. The functional status of the AC was monitored by recording click-evoked middle latency responses from a ball electrode implanted on the AC. During inactivation of the AC, IC-ER amplitudes were either increased (48 % of the cases), decreased (32 % of the cases) or not evidently changed (20 % of the cases). Corresponding effects were observed in the firing rate of IC neurons. Functional ablation of the AC also resulted in a significant prolongation of the latencies of individual waves of the IC-ER. However, the discharge pattern of the multiple unit responses, response thresholds and tuning were not altered during AC inactivation. IC neural activity recovered within several hours, and maximally during 2 days. The results reveal principles of the interaction of cortico-tectal pathways with IC neuronal activity., F. C. Nwabueze-Ogbo, J. Popelář, J. Syka., and Obsahuje bibliografii
Postnatal heart development is characterized by critical periods of heart remodeling. In order to characterize the changes in the lipophilic fraction induced by free radicals, fatty acids and t heir oxidized products, lipofuscin -like pigments (LFP), were investigated. Fatty acids were analyz ed by gas chromatography and LFP were studied by fluorescence techniques. A fluorophore characterized by spectral methods was further resolved by HPLC. Major changes in the composition of fatty acids occurred immediately after birth and then during maturation. Fluorescence of LFP changed markedly on postnatal days 1, 4, 8, and 14, and differed from the adult animals. LFP comprise several fluorophores that were present since fetal state till adulthood. No new major fluorophores were formed during development, just the abundances of individual fluorophores have been modulated which produced changes in the shape of the spectral arrays. HPLC resolved the fluorophore with excitation maximum at 360 nm and emission maximum at 410 nm. New chromatographically distinct species appeared immediately on postnatal day 1, and then on days 30 and 60. Consumption of polyunsaturated fatty acids immediately after birth and subseque nt formation of LFP suggests that oxidative stress is involved in normal heart development., J. Wilhelm, J. Ivica, Z. Veselská, J. Uhlík, L. Vajner., and Obsahuje bibliografii
Rice (Oryza sativa L.) plants were grown in nutríent solutíon containing concentrations of Cu vaiying from deficiency to toxicity [0.002-6.25 g(Cu) m"^]. Shoot contents of Cu, Mn and Fe were measured as well as the concentrations of plastocyanin (PC), plastoquinone (PQ) and cytochromes (cyt) f, 6553, 6-559up, and b- 559hp. While Cu concentration increased wilh increasing levels of metal in the solutíon, Mn and Fe concentrations progressively decreased after Cu treatments higher than 0.05 g m‘3. On a chlorophyll basis, the contents of PC and cyt/decreased after the 0.01 g(Cu) m'^ Cu treatonent, while the contents of cyt f>-559Lp and b- 559hp did not show any apparent conelatíon, and the PQ concentration sharply increased with increasing Cu toxicity. Membrane permeability and acid RNAse activity were enhanced with increasing Cu concentration.