In his book (2021) Trueman attempts to provide a solution to the problem of the concept horse, which according to Frege’s published writings is an object, not a concept. In the course of doing so Trueman rejects Wright’s response (1998) according to which some objects are also concepts, for example, the concept horse, so the categories are not exclusive. Trueman’s argument for exclusivity (Chapter 4) is the heart of the book, and as he says, it is his response to holders of differing views, like Wright. I think that there is a gap in Trueman’s argument which needs to be filled if Wright is to be considered refuted.
In “Über Sinn und Bedeutung” (1892) Frege raises a problem concerning identity statements of the form a=b and he criticizes the view he holds in the Begriffsschrift (1879, § 8). In building on a suggestion by Perry (2001/12, ch. 7) I will show how Frege’s Begriffsschrift account can be rescued and how Frege’s 1892 criticism of his Begriffsschrift’s position somewhat miss the point. Furthermore, the Begriffsschrift’s view can be developed to account in quite an elegant way to the so-called Frege’s Puzzle without committing to the sense/reference (Sinn/Bedeutung) distinction Frege introduces in “Über Sinn und Bedeutung”. To do so we have, though, to give up the idea that all the relevant information conveyed by the utterance of a simple sentence is encapsulated into a single content. I will show of this can be done in adopting a Perry-style pluri-propositionalist model of communication.
The paper aims at a clarification of Frege’s antipsychologism. It analyses Frege’s putting into opposition of logic/mathematics and psychology. It then investigates the historical roots of Frege’s views in Kant’s Critique of Pure Reason and in J. Müller’s and H. von Helmholtz’s physiological psychology. It explicates also how the opposition between Frege’s (third) realm of thoughts and that of representations is rooted in the opposition of a transcendentally understood subject (consciousness) and a naturalistic understanding of an empirical subject (consciousness), as well as its implications in the philosophy of logical positivism/empiricism. Finally, by drawing on Habermas’ linguistico-pragmatically grounded understanding of the lifeworld it shows how that opposition can be overcome and how to understand Frege’s realm of thoughts, Příspěvek se zaměřuje na objasnění Fregeho antipsychologismu. Analyzuje Fregeho uvedení do opozice logiky / matematiky a psychologie. To pak zkoumá historické kořeny Fregeových pohledů v Kantově kritice čistého rozumua v fyziologické psychologii J. Müllera a H. von Helmholtze. Vysvětluje také, jak je opozice mezi Fregeho (třetí) říší myšlenek a reprezentací zakořeněna v opozici transcendentálně chápaného subjektu (vědomí) a naturalistického chápání empirického subjektu (vědomí), jakož i jeho důsledků v filosofie logického pozitivismu / empirismu. Konečně tím, že čerpáme z Habermasova lingvisticko-pragmaticky zakotveného chápání života, ukazuje, jak lze tuto opozici překonat a jak pochopit Fregeovu říši myšlenek., and Igor Hanzel
The paper deals with the problem whether the number is a property or an object. The authors are convinced that from the logical point of view the number is an object, but from the ontological point of view the number is a special kind of property (briefly spoken the property of a system or a structure). and Prokop Sousedík, David Svoboda
In this paper we deal with the problem, whether number is a property of external things. It is divided into three parts. Firstly Mill’s empiristic concept of natural numbers is summarized, then Frege’s arguments against this conception are put forth and finally viewpoints of some contemporary analytical philosophers (first of all G. Kessler), who reject Frege’s critique, are set out. Kessler and his followers in fact revive the abandoned theory of Mill., V tomto článku se zabýváme problémem, zda je číslo majetkem vnějších věcí. Je rozdělena do tří částí. Nejprve je shrnut Millmův empirický koncept přirozených čísel, pak jsou uvedeny Fregeovy argumenty proti tomuto pojetí a nakonec jsou vytyčena stanoviska některých současných analytických filozofů (především G. Kesslera), kteří Fregeovu kritiku odmítají. Kessler a jeho následovníci ve skutečnosti oživují opuštěnou teorii mlýna., and Prokop Sousedík ; David Svoboda
This paper focuses on the roots of a functional theory of predication, which is represented primarly by Frege and Russell. After a brief presentation of the theory of Frege, I concentrate on the philosophical motivation of this theory. The example of the influence of F. H. Bradley on Russell’s conception of the categorical judgements shows a common epistemological position of both authors, which I recognize also in Frege. The point of the article is to find common grounds in Kant noetics, especially in his conception of synthetic judgement. Replacement of the problematic Kant’s notion of transcendental schema by the functional application subsequently allowed flourishing of the theory. In conclusion, I outline potential problems associated with the challenge of philosophical assumptions on which this theory is based., Příspěvek se zaměřuje na kořeny funkční teorie predikce, kterou reprezentují především Frege a Russell. Po krátké prezentaci teorie Frege se zaměřuji na filosofickou motivaci této teorie. Příklad vlivu FH Bradleyho na Russellovu koncepci kategorických úsudků ukazuje společné epistemologické postavení obou autorů, které uznávám i ve Frege. Cílem článku je najít společné důvody v Kantově noetice, zejména v jeho koncepci syntetického úsudku. Nahrazení problematického Kantova pojmu transcendentálního schématu funkční aplikacínásledně umožnil rozkvět teorie. V závěru nastiňuji možné problémy spojené s výzvou filozofických předpokladů, na nichž je tato teorie založena., and Karel Šebela
In his last book about Locke’s philosophy, E. J. Lowe claims that Frege’s arguments against the Lockean conception of number are not compelling, while at the same time he painstakingly defines the Lockean conception Lowe himself espouses. The aim of this paper is to show that the textual evidence considered by Lowe may be interpreted in another direction. This alternative reading of Frege’s arguments throws light on Frege’s and Lowe’s different agendas. Moreover, in this paper, the problem of singular sentences of number is presented, and Frege’s and Lowe’s views are confronted with it., Ve své poslední knize o Lockeově filosofii EJ Lowe tvrdí, že Fregeho argumenty proti Lockeanově pojetí čísla nejsou přesvědčivé, zatímco zároveň pečlivě definuje Lockeanovu koncepci Lowe sám. Cílem tohoto příspěvku je ukázat, že textové důkazy, které Lowe zvažuje, mohou být interpretovány jiným směrem. Toto alternativní čtení Fregeových argumentů vrhá světlo na různé agendy Fregeho a Loweho. V tomto příspěvku je navíc prezentován problém jednotlivých číselných vět a Fregeovy a Loweho názory jsou s ním konfrontovány., and Agustin Arrieta-Urtizberea
According to the positivists, all our knowledge is based on experience which is the foundation not only of every empirical science, but also of those disciplines that are usually considered to be a priori. The paper consists of two main parts. Firstly, a positivist concept of number defended by J. S. Mill is presented; secondly, it is shown how this conception can settle some objections coming from apriori-oriented philosophers. Mill’s theory of number is interesting for at least two historical reasons. It is developed in connection with a relatively rich scholastic logic which is why its methodology is similar to the contemporary philosophy of language; it is indispensable for an appropriate comprehension of the concept of number that was proposed by Mill’s most famous opponent G. Frege., Podle pozitivistů jsou všechny naše znalosti založeny na zkušenostech, které jsou základem nejen každé empirické vědy, ale také těch oborů, které jsou obvykle považovány za a priori . Příspěvek se skládá ze dvou hlavních částí. Nejprve je prezentován pozitivistický koncept počtu obhajovaných JS Millem; Za druhé, je ukázáno, jak tato koncepce může vyřešit některé námitky z apriori-orientovaných filozofů. Millova teorie čísel je zajímavá alespoň ze dvou historických důvodů. Je rozvíjena v souvislosti s relativně bohatou akademickou logikou, proto je její metodika podobná současné filosofii jazyka; je nepostradatelné pro vhodné pochopení pojmu čísla, který navrhl nejslavnější oponent ml. G. Frege., and Prokop Sousedík, David Svoboda
Frege argues that considering Socrates as an object in the proposition “Socrates exists” raises two problems. First, this proposition would be uninformative. Second, its negation entails a contradiction. Attempting to solve these problems, Frege claims that Socrates is representing the concept of a man whose name is Socrates. Therefore, existence is a second-order concept. This paper surveys the main modern theories about the types of existence, in order to find another response to Frege’s problems. For, if Socrates’ existence differs from the type that “exists” implies, “Socrates exists” is informative and its negation is not a contradiction. At last, this paper argues for an idea, in which “existence” is not a concept or property. Existence is the principle of the objects. So, “Socrates exists” is in fact “the existence is Socrates,” and “Socrates does not exist” is “there is no existence that be Socrates.” This idea could be an alternative for responding to Frege’s problems.
The unique relation between logic and truth (protorelation) is crucial for understanding Fregean conception of logic. Frege has an insight that the nature of logic resides in the ''truth'', which he finally locates in the assertoric-force of a sentence. Though Frege admits that assertoric-force is ineffable in ordinary language, he coins in his conceptual notation for such a force a much-disputed sign, i.e., judgment-stroke. In this paper, I will try to demonstrate that judgment-stroke is not adequate for the task its inventor has assigned to it. Accordingly, it is misconceived and inconducive to clarify Frege’s vague insight into the protorelation. The mistake of judgment-stroke for the sign of assertoric-force has its root in Frege’s ignorance of the significant difference between ''judgment'' and assertion'', which will be elucidated at length in the light of Husserl’s theory of ''doxic-modification''. In the end, based on a further elucidation of the activity of assertion, I will advance a tentative interpretation of the vague insight Frege has concerning the protorelation., Jedinečný vztah mezi logikou a pravdou (protorelace) je klíčový pro pochopení logiky Fregean. Frege má pochopení, že podstata logiky spočívá v ,,pravdě'', kterou nakonec nalezne v přísloví věty. Ačkoli Frege připustí, že assertoric-síla je nevýslovná v obyčejném jazyce, on mince v jeho pojmovém zápisu pro takovou sílu hodně-sporné znamení, tj., Rozsudek-mrtvice. V tomto příspěvku se pokusím prokázat, že rozsudek-úder není vhodný pro úkol, který mu jeho vynálezce přidělil. V souladu s tím je nepochopitelné a nevhodné vyjasnit Fregeův nejasný pohled na protorelaci. Chyba úsudku-mrtvice pro znamení assertoric-síla má jeho kořen ve Fregeově neznalosti významného rozdílu mezi ,,rozsudkem a tvrzením '', který bude podrobně objasněn ve světle Husserlovy teorie ,,doxické modifikace''. V závěru, na základě dalšího objasnění činnosti tvrzení, budu postupovat předběžně ve výkladu neurčitého náhledu Fregeho týkajícího se protorelace., and Gao Song