Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class of viscosities and in order to explain the main idea in as simple a manner as possible, we restrict ourselves to a discussion of the spatially periodic problem.
In this paper, we introduce and study a new class of completely generalized nonlinear variational inclusions for fuzzy mappings and construct some new iterative algorithms. We prove the existence of solutions for this kind of completely generalized nonlinear variational inclusions and the convergence of iterative sequences generated by the algorithms.
We deal with the Laplace equation in the half space. The use of a special family of weigted Sobolev spaces as a framework is at the heart of our approach. A complete class of existence, uniqueness and regularity results is obtained for inhomogeneous Dirichlet problem.
In his last book about Locke’s philosophy, E. J. Lowe claims that Frege’s arguments against the Lockean conception of number are not compelling, while at the same time he painstakingly defines the Lockean conception Lowe himself espouses. The aim of this paper is to show that the textual evidence considered by Lowe may be interpreted in another direction. This alternative reading of Frege’s arguments throws light on Frege’s and Lowe’s different agendas. Moreover, in this paper, the problem of singular sentences of number is presented, and Frege’s and Lowe’s views are confronted with it., Ve své poslední knize o Lockeově filosofii EJ Lowe tvrdí, že Fregeho argumenty proti Lockeanově pojetí čísla nejsou přesvědčivé, zatímco zároveň pečlivě definuje Lockeanovu koncepci Lowe sám. Cílem tohoto příspěvku je ukázat, že textové důkazy, které Lowe zvažuje, mohou být interpretovány jiným směrem. Toto alternativní čtení Fregeových argumentů vrhá světlo na různé agendy Fregeho a Loweho. V tomto příspěvku je navíc prezentován problém jednotlivých číselných vět a Fregeovy a Loweho názory jsou s ním konfrontovány., and Agustin Arrieta-Urtizberea
The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type \left\{ {\begin{array}{*{20}c} {D_H X(t) = F(t,X_t ,D_H X_t ),} // {\left. X \right|_{\left[ { - r,0} \right]} = \Psi ,} // \end{array} } \right. where F: [0, b]× C_{0}x L_{0}^{1}\rightarrow K_{c}(E)) is a given function, Kc(E) is the family of all nonempty compact and convex subsets of a separable Banach space E, C0 denotes the space of all continuous set-valued functions X from [−r, 0] into Kc(E), L_{0}^{1} is the space of all integrally bounded set-valued functions X: [−r, 0] → Kc(E), Ψ \in C_{0} and D_{H} is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied., Umber Abbas, Vasile Lupulescu, Donald O’Regan, Awais Younus., and Obsahuje seznam literatury
The problems related to periodic solutions of cellular neural networks (CNNs) involving D operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system.
The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.
We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.
In this paper, we employ some new techniques to study the existence of positive periodic solution of $n$-species neutral delay system
\[ N^{\prime }_i(t)=N_i(t)\biggl [a_i(t)-\sum _{j=1}^n\beta _{ij}(t)N_j(t)- \sum _{j=1}^nb_{ij}(t)N_j(t-\tau _{ij}(t))-\sum _{j=1}^nc_{ij}(t) N^{\prime }_j(t-\tau _{ij}(t))\biggr ]. \] As a corollary, we answer an open problem proposed by Y. Kuang.
In this paper we present some new existence results for singular positone and semipositone boundary value problems of second order delay differential equations. Throughout our nonlinearity may be singular in its dependent variable.