In order to study the mechanisms of Se-mediated growth improvement as related to carbon (C) and nitrogen (N) metabolism, wheat plants were cultivated hydroponically with adequate (4 mM, Na) or low (1 mM, Nd) N supply and treated with 10 and 50 μM Na2SeO4 for six weeks. The Se supplementation enhanced plant biomass; it was significant for shoots of Na plants at 50 μM Se. Chlorophyll fluorescence parameters were significantly lowered under Nd conditions but restored completely by Se addition reaching values of those in Na plants. Net CO2 assimilation rate (PN) decreased only slightly by limited N availability, but it enhanced significantly in both Nd and Na plants equally by 10 and 50 μM Se. Effect of Se on PN in the Na plants occurred mainly due to the stomata opening, while it was related to both stomatal and nonstomatal mechanisms in the Nd plants. The Se treatment resulted in enhancement of nitrate reductase (NR) activity in both Na and Nd plants with an optimal response at 10 μM Se. Negative correlations between nitrate concentration and NR activity indicated a partial nitrate depletion in the roots following by elevated NR activity in Nd plants. In contrast, nitrite concentrations were higher in the Se treated plants. Higher amino acids and protein concentrations in the Se-treated plants might be an indication of a general upregulation of N metabolism. However, in Na plants, the stimulation of N metabolism was not observed at 50 μM Se which could not be attributed to lesser availability of C skeletons because of maintaning higher CO2 fixation under these conditions. It implies the function of some regulatory mechanisms that are responsible for coordination of C and N metabolism in whole plant., R. Hajiboland, N. Sadeghzade., and Obsahuje bibliografii
The objective of this study was to investigate a response to low-light environments in hybrids and commercial cultivars of Boehmeria nivea L. Two hybrids (Chuanzhu 11 and Chuanzhu 8) and two commercial cultivars (Chuanzhu 12 and Chuanzhu 6) of ramie were subjected to a shade treatment for 6, 12, and 18 days. The shade treatment led to a significant decrease in some plant traits and fiber yield in four ramie cultivars, whereas their leaf area and plant height increased. In addition, net photosynthesis and stomatal conductance significantly declined in response to shade, while transpiration rate and intercellular CO2 did not significantly change. Moreover, chlorophyll (Chl) and carotenoid (Car) concentration, Chl/Car, and Chl (a+b) per leaf dry mass significantly increased in the response to shade, while the Chl a/b ratio decreased. Furthermore, Chuanzhu 6 and Chuanzhu 11 were more tolerant to shade than Chuanzhu 12 and Chuanzhu 8, thus, they could be potentially used for management practices and breeding programs., C.-J. Huang, G. Wei, Y.-C. Jie, J.-J. Xu, S. A. Anjum, M. Tanveer., and Seznam literatury
Little is known regarding to impact of simulated shading conditions on cotton yield and fiber quality at different fruiting positions. In this 2-year study, our field experiments investigated the effects of shading percentage on the cotton yield, fiber properties, photosynthesis, and carbohydrate concentrations in boll's subtending leaves during various growing stages at different fruiting positions (FP). Net photosynthetic rate and effective quantum yield of PSII photochemistry decreased in response to shading on both FP1 and FP3 of the 7th sympodial branches, respectively. Shading also reduced sucrose and starch contents of leaves at each fruiting position. Shading decreased the number and mass of cotton bolls, the fiber strength and micronaire, while the fiber length increased at both fruiting positions. Our results suggested that shading resulted in the reduction of the cotton yield and fiber quality, which are mainly associated with the changes in boll number and alteration of photosynthesis and carbohydrate concentrations during the boll development., B. L. Chen, H. K. Yang, Y. N. Ma, J. R. Liu, F. J. Lv, J. Chen, Y. L. Meng, Y. H. Wang, Z. G. Zhou., and Obsahuje bibliografii
In our study, one-month-old Melissa officinalis plants were subjected to Fe-deficiency treatments, such as 10 µM Fe (as direct iron deficiency, DD), and 30 µM Fe + 10 mM NaHCO3 + 0.5 g l-1 CaCO3 (as indirect iron deficiency, ID), and 30 µM Fe (as control) for 14 d. Both Fe-deficiency types reduced plant growth, photosynthetic pigment contents, an active Fe content in roots and leaves, root Fe(III)-reducing capacity, Fe-use efficiency, maximal quantum yield of PSII photochemistry, a ratio of variable to basic fluorescence, and activities of antioxidant enzymes, while they increased lipid peroxidation and a H2O2 content in leaves. These effects were more pronounced in plants exposed to ID with bicarbonate than those of DD plants. We showed that sodium nitroprusside (SNP), as NO donor, could ameliorate the adverse effects of bicarbonate on above traits. The methylene blue, as NO blocker, reversed the protective effects conferred by SNP in the ID-treated plants as well as DD plants. These findings suggests that NO protects photosynthesis and growth of IDtreated plants as well as DD plants by contribution in availability and/or delivery of metabolically active iron or by changing activities of reactive oxygen species-scavenging enzymes., R. Amooaghaie, Sh. Roohollahi., and Obsahuje bibliografii
a1_The photosynthetic and chlorophyll fluorescence parameters were studied in Ziziphus jujuba var. spinosus under different soil water gradients obtained by irrigation and natural water consumption. We used the rectangular hyperbola model, the nonrectangular hyperbola model, the exponential model, and the modified rectangular hyperbola model to fit our data and evaluate them quantitatively. Based on the relationship among the parameters, the effects of the availability of soil water on photosynthesis were elucidated. The results showed that: (1) The relationship between water content and photosynthetic parameters were fitted best by the modified rectangular hyperbola model, followed by the nonrectangular hyperbola model, the exponential model, and the rectangular hyperbola model. The modified rectangular hyperbola model fitted best the maximum net photosynthetic rate (PNmax) and the light-saturation point (LSP), while the nonrectangular hyperbola model fitted best the dark respiration rate (RD), the apparent quantum yield (AQY), and the light-compensation point (LCP)., a2_(2) The main reason for the net photosynthetic rate (PN) decline was that it reached a stomatal limit when the soil relative water content (RWC) was greater than 25% and it reached a nonstomatal limit when the RWC was lesser than 25%. Under these conditions, the photosynthetic apparatus of Z. jujuba was irreversibly damaged. (3) Pmax, RD, AQY, and LSP increased first and then decreased, while LCP increased contrary to the RWC. The P N light-response parameters reached optimum when the RWC was 56-73%. (4) The quantum yield of PSII photochemistry reached a maximum when RWC was 80%. Nonphotochemical quenching decreased rapidly, and the minimum fluorescence in the dark-adapted state increased rapidly when RWC was lesser than 25%. Under these conditions, PSII was irreversibly damaged. (5) The RWC range of 11-25% resulted in low productivity and low water use efficiency (WUE). The RWC range of 25-56% resulted in moderate productivity and moderate WUE, and the RWC range of 56-80% resulted in high productivity and high WUE. The RWC range of 80-95% resulted in moderate productivity and low WUE. In summary, photosynthesis of Z. jujuba was physiologically adaptable in response to water stress in sand formed from seashells. The photosynthetic and physiological activity was maintained relatively high when the RWC was between 56 and 80%; Z. jujuba seedlings grew well under these conditions., J. B. Xia, G. C. Zhang, R. R. Wang, S. Y. Zhang., and Obsahuje bibliografii
In order to evaluate the effect of static magnetic field (SMF) on morphological and physiological responses of soybean to water stress, plants were grown under well-watered (WW) and water-stress (WS) conditions. The adverse effects of WS given at different growth stages was found on growth, yield, and various physiological attributes, but WS at the flowering stage severely decreased all of above parameters in soybean. The result indicated that SMF pretreatment to the seeds significantly increased the plant growth attributes, biomass accumulation, and photosynthetic performance under both WW and WS conditions. Chlorophyll a fluorescence transient from SMF-treated plants gave a higher fluorescence yield at J-I-P phase. Photosynthetic pigments, efficiency of PSII, performance index based on absorption of light energy, photosynthesis, and nitrate reductase activity were also higher in plants emerged from SMF-pretreated seeds which resulted in an improved yield of soybean. Thus SMF pretreatment mitigated the adverse effects of water stress in soybean., L. Baghel, S. Kataria, K. N. Guruprasad., and Obsahuje bibliografii
In the Orinoco lowlands, savannas have been often replaced by pastures composed of the C4 grass, Brachiaria decumbens Stapf. We addressed following questions: (1) How does the replacement of the native vegetation affect CO2 exchange on seasonal and annual scales? (2) How do biophysical constraints change when the landscape is transformed? To assess how these changes affect carbon exchange, we determined simultaneously the CO2 fluxes by eddy covariance, and the soil CO2 efflux by a chamber-based system in B. decumbens and herbaceous savanna stands. Measurements covered a one-year period from the beginning of the dry season (November 2008) to the end of the wet season (November 2009). During the wet season, the net ecosystem CO2 exchange reached maximum values of 23 and 10 μmol(CO2) m-2 s-1 in the B. decumbens field and in the herbaceous savanna stand, respectively. The soil CO2 efflux for both stands followed a temperature variation during the dry and wet seasons, when the soil water content (SWC) increased above 0.087 m3 m-3 in the latter case. Bursts of CO2 emissions were evident when the dry soil experienced rehydration. The carbon source/sink dynamics over the two canopies differed markedly. Annual measurements of the net ecosystem production indicated that the B. decumbens field constituted a strong carbon sink of 216 g(C) m-2 y-1. By contrast, the herbaceous savanna stand was found to be only a weak sink [36 g(C) m-2 y-1]. About 53% of the gross primary production was lost as the ecosystem respiration. Carbon uptake was limited by SWC in the herbaceous savanna stand as evident from the pattern of water-use efficiency (WUE). At the B. decumbens stand, WUE was relatively insensitive to SWC. Although these results were specific to the studied site, the effect of land use changes and the physiological response of the studied stands might be applicable to other savannas., J. San José, R. Montes, N. Nikonova, J. Grace, C. Buendía., and Obsahuje bibliografii
Water availability is an important factor for plant growth in arid environments. In recent decades, vermicompost (VC) fertilizer has been used in agriculture as a safe and effective fertilizer with high water-holding capacity. The aim of the present study was to characterize effects of VC fertilizer on photosynthetic activity of chickpea (Cicer arietinum L. cv. Karaj) under drought conditions at three different growth stages. Tests were carried out with four volumetric ratios of VC to soil, i.e., 0:100, 10:90, 20:80, and 30:70, and three levels of drought stress, i.e., no stress (NS), moderate drought (MS), and severe drought (SS) (100, 75, and 25% of field capacity, respectively). Evaluations were performed at the seedling, flowering, and podding stage. We found that the VC treatment under NS conditions significantly increased total chlorophyll content [Chl (a+b)], intercellular CO2 concentration (C i), net photosynthetic rate (P N), transpiration rate (E), and maximal quantum yield of PSII photochemistry (Fv/Fm) at all three stages. The VC addition of 10 and 20% significantly enhanced the Chl content and Fv/Fm under MS and Fv/Fm, C i, and P N under SS at the flowering stage. In conclusion, our results proved a positive effect of the VC fertilizer on photosynthesis of chickpea under NS conditions, but it was not found under MS and SS., S. R. Hosseinzadeh, H. Amiri, A. Ismaili., and Obsahuje seznam literatury
In order to evaluate effect of weedy rice on the photosynthesis and grain filling of cultivated rice, cultivated rice ‘Nanjing 44‘ was planted in the field under different densities of weedy rice ‘JS-Y1‘ for two years. The results showed that net photosynthetic rate (PN), net assimilation rate, grain filling rate, and the grain yield of cultivated rice all decreased with increasing weedy rice density. Furthermore, yield component analysis revealed that increasing weedy rice density had the most significant effect on the percentage of filled grains and the number of rice panicles. The correlation analyses indicated that the yield of cultivated rice was highly correlated with the net photosynthetic rate and the net assimilation rate. Our results illustrated that high density of weedy rice might cause yield losses in cultivated rice by inhibition of photosynthesis and grain filling., X. M. Xu, G. Li, Y. Su, X. L. Wang., and Obsahuje bibliografii
The physiological response of plants to triple foliar biofertilization with cyanobacteria and green algae under the conditions of limited use of chemical fertilizers was investigated. Triple foliar biofertilization with intact cells of Microcystis aeruginosa MKR 0105, Anabaena sp. PCC 7120, and Chlorella sp. significantly enhanced physiological performance and growth of plants fertilized with a synthetic fertilizer YaraMila Complex (1.0, 0.5, and 0.0 g per plant). This biofertilization increased the stability of cytomembranes, chlorophyll content, intensity of net photosynthesis, transpiration, stomatal conductance, and decreased intercellular CO2 concentration. Applied monocultures augmented the quantity of N, P, K in plants, the activity of enzymes, such as dehydrogenases, RNase, acid or alkaline phosphatase and nitrate reductase. They also improved the growth of willow plants. This study revealed that the applied nontoxic cyanobacteria and green algae monocultures have a very useful potential to increase production of willow, and needed doses of chemical fertilizers can be reduced., M. Grzesik, Z. Romanowska-Duda, H. M. Kalaji., and Obsahuje bibliografii