Recently a large number of studies have reported an increase in the variability in the climate, which affects behavioural and physiological adaptations in a broad range of organisms. Specifically, insects may be especially sensitive to climatic fluctuations, as their physiology and life history traits, like those of other ectotherms, are predominantly affected by environmental factors. Here we aimed to investigate climate-induced changes in several morphometric measures of the Heath Fritillary in North-Eastern Hungary, which is a highly diverse transitional area. During this study we tested the following hypotheses: (i) climate affects genitalia and body size to various degrees (ii) increasing variability in climate induces higher levels of fluctuating asymmetry and variance in all morphological characters. To our knowledge, this study is the first to analyse simultaneously wing size and structure of genitalia of a butterfly in response to variability in climate. Our findings suggest that wing and genital traits may exhibit similar degrees of stability in response to a more variable climate, although the response in terms of forewing size differs from that of other body measurements and the structure of the genitalia. These findings suggest that global climate change may affect lepidopteran body metrics over longer periods of time. Our findings parallel the results of investigations showing that insect morphology might be modified by environmental changes, which is especially the case for those body parts that are phenotypically very variable. However, we found no evidence that increasing variability in climate would induce higher levels of fluctuating asymmetry and greater variability in morphological characters., Edit Juhász, Zsolt Végvári, János P. Tóth, Katalin Pecsenye, Zoltán Varga., and Obsahuje bibliografii
In herbivorous insects, differences in the degree of specialization to host plants emerge when the distribution of an herbivore differs from that of its host plants, which results in a mosaic of populations differing in performance on the different host plants. Using a specialized butterfly, Battus polydamas archidamas Boisduval, 1936, which feeds exclusively on the genus Aristolochia, we test whether host plant co-occurrence and associated differences in host quality modify local adaptation in terms of larval preference and performance. We compared individuals from a monospecific host stand of Aristolochia chilensis with those from a mixed host stand of A. chilensis and A. bridgesii. Individuals were reared in a reciprocal transfer experiment in which source population and the host species fed to larvae were fully crossed in a two-by-two factorial experiment in order to quantify their preference, performance (development time, size and growth rate) and survival. Individuals from both populations preferred the species they ate during their larval development over the other host, which indicates host plant-induced preference with non-adaptive implications. Larvae from mixed and monospecific stands grew faster and survived better when reared on A. bridgesii than A. chilensis. Larvae from a monospecific host stand grew slower and fewer individuals survived under the same local conditions, which is contrary to expectations. Therefore, rearing the butterfly on A. bridgesii consistently resulted in better performance, which indicates that the monospecific population is less well adapted to its host than the mixed population. Variation in the occurrence of the two host plants in the two populations can result in divergent selection due to the variation in plant quality, which in this case could result in opposing adaptive processes., Rodrigo S. Rios, Cristian Salgado-Luarte, Gisela C. Stotz, Ernesto Gianoli., and Obsahuje bibliografii
The Chinese pine caterpillar Dendrolimus tabulaeformis is an important destructive leaf borer in boreal coniferous forests in China. This species overwinters in the larval stage. Changes in supercooling capacity and physiological-biochemical parameters of D. tabulaeformis larvae from a natural population were evaluated at different stages during the overwintering period. Cold hardiness of overwintering larvae collected in January was significantly greater than that of larvae collected in other months. January larvae survived for 15 days at -10°C and for approximately 2 days at -15°C. By contrast, larvae collected in September survived for no more than 4 h at -5°C and those in November and March no more than 1 day at -15°C. Supercooling point gradually decreased from -5.9 ± 0.3°C in September to a minimum of -14.1 ± 1.0°C in November, then gradually increased to the original value with the advent of spring. Water content gradually decreased from September to November, remained at approximately 74.5% until March and then gradually increased to levels similar to those in September. The lipid content gradually decreased from September to November, remained stable at approximately 3.2% until March and then gradually increased to levels similar to those in September. Glycogen content increased to a peak in November and then decreased. The concentrations of several metabolites showed significant seasonal changes. The most prominent metabolite was trehalose with a seasonal maximum in November. Glucose levels were highest in January and then gradually decreased until in May they were at levels similar to those in September. Glycerol levels remained relatively stable during winter but increased significantly in May. This study indicates that D. tabulaeformis is a freeze-avoidant insect. Larvae increase their supercooling capacity by regulating physiological-biochemical parameters during overwintering., Yuying Shao, Yuqian Feng, Bin Tian, Tao Wang, Yinghao He, Shixiang Zong., and Obsahuje bibliografii
Mean development rates under cycling temperature regimes (both alternating and sinusoidal regimes) have been found to be either accelerated, decelerated or unaffected when compared to development at constant temperature regimes with equivalent means. It is generally accepted that this phenomenon is a consequence of the non-linearity inherent in the temperature-rate relationship of insect development and is known as the rate summation, or Kaufmann, effect. Some researchers invoke an additional physiological mechanism or specific adaptation to cycling temperatures resulting in a genuine alteration of development rate. Differences in development rates at constant and cycling temperatures may have important implications for degree-day (linear) population models, which are used in bath pest management and ecological studies.
Larvae of Aglais urticae L. (small tortoiseshell), Inachis io L. (peacock), Polygonia c-album L. (comma) and Vanessa atalanta L. (red admiral) (Lepidoptera: Nymphalidae) were reared at constant (10, 15, 20, 25, 30°C) and alternating (20/10, 25/15, 30/10, 30/20°C) regimes. Development rates under the alternating regimes used were found to differ from those under equivalent constant temperatures in a pattern suggestive of the Kaufmann effect: in all species development at 20/10°C was faster than at 15°C, and for three species development at 30/20°C was slower than at 25°C. The exception was A. urticae. A similar pattern was found for growth rate and pupal weight. The results are discussed with respect to cycling temperature theory and degree-day modelling., Simon R. Bryant, Jeffrey S. Bale, Chris D. Thomas, and Lit
The efficiency of Monte-Carlo procedures to test some hypotheses about the spatial patterns of larvae and damages of Lobesia botrana was studied. Two hypotheses were tested to detect spatial heterogeneity and spatial dependence. The most practical implication is to provide an efficient sampling scheme. The study of the relationship between spatial patterns and grape availability was required to explain scales of spatial heterogeneity and population dynamics studies were needed to relate it to oviposition behavior. It was tested through a third hypothesis. We adapted Monte-Carlo simulation procedures for the analysis of exhaustive count data obtained from regular grids delimited within each of two vineyards. Statistical analyses were based on count permutations and on count redistributions according to the hypotheses which were tested. Indices of aggregation and autocorrelation statistics were used. The hypotheses that we tested at different scales were random distribution of the infestations (HR), independence of vine stock (or groups of k vine stocks) infestation (HI) and independence between vine stock infestation and grape availability (HG). Monte-Carlo tests revealed the same spatial patterns for larvae and damages. We detected different spatial patterns. The implications for sampling were that sample unit could be an individual stock and that sampling along a row could not be used to estimate population density in the vineyard. Results showed that infestation of a given stock depended on grape availability on this stock and on neighboring vine stocks., Isabelle Badenhausser, Patrice Lecharpentier, Lionel Delbac, Pascale Pracros, and Lit
We studied a population of the regionally endangered marsh fritillary butterfly Euphydryas aurinia inhabiting a system of loosely connected dry calcareous grasslands in sub-Mediterranean Slovenia. Our goal was to set the basis for a long-term monitoring of this butterfly in four meadows using mark-release-recapture (MRR). We determined its demographic parameters, dispersal, behaviour and utilization of nectar plants in different quality patches. Total population size was estimated to be approximately 347 males (95% confidence interval: 262-432) and 326 females (95% confidence interval: 250-402), with an unbiased sex ratio. The average lifespans were 6.3 and 8.6 days, respectively. Daily population sizes followed a parabola with marked protandry. Both sexes were relatively highly mobile with both occasionally moving over half a kilometre. The spatial distribution of animals seemed to be associated with patch size, host plant densities and nectar sources, resulting in much higher population densities in the largest patch. Adult behaviour differed between the sexes, with females resting more and flying less than males. Behaviour also changed during daytime and with the progression of the season. Adults were confirmed to be opportunistic feeders, since as many as ten nectar sources were detected. We conclude that demographic parameters differ greatly among regions and habitats, thus conservation aims should be planned accordingly. Although the population studied is apparently in good condition, there are threats that may hamper the long-term persistence of the species in this area: succession, intensification of mowing and overgrazing., Jure Jugovic, Costanza Uboni, Sara Zupan, Martina Lužnik., and Obsahuje bibliografii
Estimating the spatial dispersion of pest arthropods is crucial for the development of reliable sampling programs and one of the main components of integrated pest management. The natural spatial distribution of a population of a species may be random, uniform, or aggregated and can be so classified based on calculation of variance to mean relations and related dispersion indices. In this work some classical density-invariant dispersion indices and related regression models are used for the first time to quantify the spatial dispersion of an important peach pest Anarsia lineatella Zeller (Lepidoptera: Gelechiidae) and construct fixed precision sequential sampling schemes. Taylor's power law, Iwao's patchiness regression and Nachman's model were used to analyse the damage to peaches caused by A. lineatella. All three regression models fit the data well, although the results indicate that Iwao's patchiness model provides a better description of the relationship between variance and mean density. Taylor's b and Iwao's b regression indices were both significantly smaller than 1, indicating that the distribution of individuals was uniform rather than random or aggregated. According to Green's and Kuno's models, the minimum sample size at the precision level of 0.2 varies from 3 samples, when total population density is more than 3 larvae/sample, to 10 samples, when population density is between 1 and 2 larvae/sample. Kuno's fixed sampling plan indicates that a small number of samples (i.e., 3-10 branches with fruit) is sufficient to estimate the mean population density of A. lineatella larvae with a precision of 0.2. The Resampling for validation of sampling plans (RVSP) method confirmed that the average level of precision of the fixed sequential plans matched the desired precision in most cases. The sampling plan presented here provides a level understanding of A. lineatella spatial ecology suitable for pest manage, Petros Damos., and Obsahuje bibliografii
This note aims to put on record a hitherto unreported function of caterpillar setae supplementary to those already known. When woolly bear caterpillars of the moth Lemyra imparilis (Butler) have their body hairs removed and are dropped into a bucket of water from a height of 30 cm, they sink immediately. Caterpillars, however, with an intact coat of hairs usually float. This hitherto unreported role of caterpillar setae as life-rafts should depend on a high contact angle θe, and thus on the position, density and dimensions of the hairs. An SEM examination of the surface structure of the setae revealed a system of fine grooves and small distally pointing barbs on the hair shaft, which can trap air to support the weight of the insect. Insect setae generally and body hairs of caterpillars in particular are known to possess many functions, but a role as life-rafts for caterpillars in danger of drowning can now be added to the list of possible uses of body hairs., V. Benno Meyer-Rochow., and Obsahuje bibliografii
A new species of Lymanopoda Westwood, a cloud forest Neotropical genus of Satyrinae, is described from the páramo grasslands on an isolated, peripheral massif in the Colombian Central Cordillera of the Andes: L. flammigera Pyrcz, Prieto & Boyer, sp. n. The genus Lymanopoda is species-rich (approx. 65 species) and its alpha taxonomy is relatively well researched. Relationships within the genus using molecular data have also been explored. The new species is outstanding for its golden yellow colour in males, not found in any other neotropical Satyrinae. Cladograms were constructed based on COI sequences of 47 species of Lymanopoda (~ 70% of the known species) including 17 from Colombia. The new species segregates in the "tolima" clade, which comprises four other high altitude Colombian species, as well as two from Ecuador. However, it is the comparative analysis of male genitalia, in particular the superuncus and valvae, which identified its closest relatives, thus confirming that genital characters can help refine molecular phylogenies. In addition to identifying species using mitochondrial DNA (mtDNA barcodes), nucleotide sites with unique fixed states used to identify nine species of Lymanopoda from Colombia are also presented., Tomasz W. Pyrcz, Carlos Prieto, Pierre Boyer, Jadwiga Lorenc-Brudecka., and Obsahuje bibliografii
The potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is a major pest of potato, Solanum tuberosum L. (Solanales: Solanaceae), both in the field and storehouses. The rate of development and survival of P. operculella, reared on potato tubers cv. Spunta at eight constant temperatures (17.5, 20, 22.5, 25, 27.5, 30, 32.5 and 35°C), were studied in the laboratory. The duration of development of the immature stages was recorded. Adult longevity was also recorded under the same conditions. Developmental time decreased significantly with increase in temperature within the range 17.5-32.5°C. No development occurred at 35°C. Survival (%) from egg to adult was higher at temperatures within the range 17.5-27.5°C than at either 30 or 32.5°C. Linear and a non-linear (Logan I) models were fitted to our data in order to describe the developmental rate of the immature stages of P. operculella as a function of temperature and estimate the thermal constant (K) and critical temperatures (i.e., lower developmental threshold, optimum temperature for development, upper developmental threshold). Lower developmental threshold and optimum temperature for development ranged between 12.5-16.2 and 31.7-33.8°C, respectively. The estimated upper developmental threshold for total immature development was 35.0°C. Thermal constant for total development was 294.0 degree-days. Adult longevity was significantly shorter at high (30 and 32.5°C) than at low temperatures (17.5-27.5°C). Our results not only provide a broader insight into the thermal biology of P. operculella, but also can be used as an important tool in planning an effective pest control program both in the field and storehouses., Stefanos S. Andreadis, Christos G. Spanoudis, Georgia Zakka, Barbara Aslanidou, Sofia NoukariI, Matilda Savopoulou-Soultani., and Obsahuje bibliografii