The Chinese pine caterpillar Dendrolimus tabulaeformis is an important destructive leaf borer in boreal coniferous forests in China. This species overwinters in the larval stage. Changes in supercooling capacity and physiological-biochemical parameters of D. tabulaeformis larvae from a natural population were evaluated at different stages during the overwintering period. Cold hardiness of overwintering larvae collected in January was significantly greater than that of larvae collected in other months. January larvae survived for 15 days at -10°C and for approximately 2 days at -15°C. By contrast, larvae collected in September survived for no more than 4 h at -5°C and those in November and March no more than 1 day at -15°C. Supercooling point gradually decreased from -5.9 ± 0.3°C in September to a minimum of -14.1 ± 1.0°C in November, then gradually increased to the original value with the advent of spring. Water content gradually decreased from September to November, remained at approximately 74.5% until March and then gradually increased to levels similar to those in September. The lipid content gradually decreased from September to November, remained stable at approximately 3.2% until March and then gradually increased to levels similar to those in September. Glycogen content increased to a peak in November and then decreased. The concentrations of several metabolites showed significant seasonal changes. The most prominent metabolite was trehalose with a seasonal maximum in November. Glucose levels were highest in January and then gradually decreased until in May they were at levels similar to those in September. Glycerol levels remained relatively stable during winter but increased significantly in May. This study indicates that D. tabulaeformis is a freeze-avoidant insect. Larvae increase their supercooling capacity by regulating physiological-biochemical parameters during overwintering., Yuying Shao, Yuqian Feng, Bin Tian, Tao Wang, Yinghao He, Shixiang Zong., and Obsahuje bibliografii
We investigated the effect of the feeding behaviour of young larvae of Pieris rapae crucivora Boisduval (Pieridae) on parasitism by the parasitoid wasp, Cotesia glomerata (L.) (Braconidae). Young, 1st-3rd instar larvae used approximately three sites for feeding each day. When not feeding, they moved a short distance away from the feeding sites (= feeding marks) and rested. For first, second and third instar larvae, the distances from the new mark, made within 24 h, to larva at rest were, respectively, about 3.5 mm, 5 mm and more than 10 mm. To resume feeding, they moved back to one of the former feeding sites or a new site. The percentage of the feeding marks older than 24 h that attracted parasitoids was less than 50%. Time spent searching for hosts by a parasitoid was short. Larvae placed 5 mm or more from a feeding mark were less parasitized than the larvae placed near a mark. The number of feeding marks affected parasitism. When comparing single-marked and triple-marked leaves, the percentage parasitism of the larvae on the latter was significantly lower than that of the larvae on the former. On triple-marked leaves, parasitoids visited each mark unevenly. Accordingly, the time spent searching each mark differed significantly among the marks. Because of this confusing effect, hosts are considered to be reducing the risk of parasitism. Our results demonstrate that the feeding habits of young larvae of P. rapae crucivora are adaptive in terms of reducing the risk of parasitism by C. glomerata., Aya Nakayama, Keiji Nakamura, Jun Tagawa., and Obsahuje bibliografii