In present paper we assess the climate change impact on mean runoff between the periods 1961-1990 (control period) and 2070-2099 (scenario period) in the Czech Republic. Hydrological balance is modelled with a conceptual hydrological model BILAN at 250 catchments of different sizes and climatic conditions. Climate change scenarios are derived using simple delta approach, i.e. observed series of precipitation, temperature and relative air humidity are perturbed in order to give the same changes between the control and scenario period as in the ensemble of 15 transient regional climate model (RCM) simulations. The parameters of the hydrological model are for each catchment estimated using observed data. These parameters are subsequently used to derive discharge series under climate change conditions for each RCM simulation. Although the differences in the absolute values of the changes in runoff are considerable, robust patterns of changes can be identified. The majority of the scenarios project an increase in winter runoff in the northern part of the Czech Republic, especially at catchments with high elevation. The scenarios also agree on a decrease in spring and summer runoff in most of the catchments. and V článku předkládáme výsledky modelování změn hydrologického režimu v důsledku změn klimatu mezi časovými obdobími 1961-1990 a 2070-2099 podle souboru patnácti regionálních klimatických modelů pro 250 povodí v České republice. Hydrologická bilance byla modelována pomocí konceptuálního hydrologického modelu BILAN. Časové řady ovlivněné změnou klimatu byly získány jednoduchou přírůstkovou metodou, tj. pozorované časové řady srážek, teplot a vlhkostí vzduchu (vstupy do modelu BILAN) byly opraveny pro každou simulaci pomocí přírůstkových faktorů tak, aby měsíční změny těchto veličin byly stejné jako podle uvažované simulace klimatického modelu. Hydrologický model je nakalibrován s využitím pozorovaných dat, identifikované parametry jsou následně využity pro simulaci hydrologické bilance pro řady ovlivněné klimatickou změnou. Základní podstata možných změn hydrologické bilance na území České republiky vyplývá z projekcí srážek a teplot pro Evropu, tj. postupné zvyšování teplot během celého roku a pokles letních, růst zimních a stagnace ročních srážek. V období od začátku podzimu do začátku léta dochází k růstu srážek, jenž je doprovázen řádově stejným růstem územního výparu způsobeným růstem teplot. V letním období dochází k poklesu srážek a v důsledku úbytku zásob vody v povodí nemůže docházet k výraznému zvyšování územního výparu. Důležitým faktorem ovlivňující změny odtoku je posun doby tání v důsledku vyšší teploty přibližně z dubna na leden-únor. Změny odtoku v období leden-květen jsou tedy dominantně určeny právě odlišnou dynamikou sněhové zásoby, změny v letním období zejména úbytkem srážek. Výsledné odhady změn odtoku jsou zatíženy značnou nejistotou, nicméně lze identifikovat robustní jevy společné pro řadu simulací. Jak ukazují výsledky, na většině modelovaných povodí je pokles odtoků v období od dubna do října společný valné většině modelů. Na druhé straně, růst odtoku v zimních měsících je značně nejistý. S tím souvisí i nejistota spojená se změnami roční bilance odtoků.
Knowledge of hydrological processes and water balance elements are important for climate adaptive water management as well as for introducing mitigation measures aiming to improve surface water quality. Mathematical models have the potential to estimate changes in hydrological processes under changing climatic or land use conditions. These models, indeed, need careful calibration and testing before being applied in decision making. The aim of this study was to compare the capability of five different hydrological models to predict the runoff and the soil water balance elements of a small catchment in Norway. The models were harmonised and calibrated against the same data set. In overall, a good agreement between the measured and simulated runoff was obtained for the different models when integrating the results over a week or longer periods. Model simulations indicate that forest appears to be very important for the water balance in the catchment, and that there is a lack of information on land use specific water balance elements. We concluded that joint application of hydrological models serves as a good background for ensemble modelling of water transport processes within a catchment and can highlight the uncertainty of models forecast.
There is public concern that large-scale disturbances to forest cover caused by insects and storm winds in the Bohemian Forest could intensify high water flows and enhance the expected flooding risks predicted in current regional climate change scenarios. We analysed stream discharge in Upper Vydra and Große Ohe, neighbouring catchments in the Bohemian Forest, the largest contiguous forested area in Central Europe. Upper Vydra, in the Šumava National Park, and Große Ohe (including the Upper Große Ohe headwater catchment in the Bavarian Forest National Park) are similar in size, but differ in land use cover and the extent of disturbed Norway spruce stands. Publicly available runoff and meteorological data (1978-2011) were examined using non-parametric trend and breakpoint analysis. Together with mapped vegetation cover changes, the results were used to address the following questions: 1) are there significant changes in the hydrological cycle and, if so, do these changes relate to 2) the extent and expansion of disturbance in forests stands and/or 3) altered precipitation dynamics and thermal conditions? We found no marked overall change in annual runoff or in annual or seasonal precipitation, but a significant increase in high flows in March. This overall trend related to the marked warming in late winter and early spring (+~4 K in April, p < 0.01), irrespective of altitude and slope position. It significantly shifted the end of the snow cover period by more than three weeks to the beginning/middle of April depending on altitude, and intensified snow melt. In the Upper Große Ohe catchment, a significant decrease in catchment balance, the difference between the long term precipitation and runoff (-72 mm, 11%) was found when the loss of tree cover reached 30% of catchment area. Diminished evapotranspiration losses from severely disturbed stands increased groundwater recharge during summer and caused a significant rise in low flows in autumn. However, observed increases in late winter high flows were due to warming only. They could be further intensified by the increasing winter precipitation predicted under present climate change scenarios, and would therefore increase the risk of flooding at lower elevations.
In arid and semiarid ecosystems, plant interspaces are frequently covered by communities of cyanobacteria, algae, lichens and mosses, known as biocrusts. These crusts often act as runoff sources and are involved in soil stabilization and fertility, as they prevent erosion by water and wind, fix atmospheric C and N and contribute large amounts of C to soil. Their contribution to the C balance as photosynthetically active surfaces in arid and semiarid regions is receiving growing attention. However, very few studies have explicitly evaluated their contribution to organic carbon (OC) lost from runoff and erosion, which is necessary to ascertain the role of biocrusts in the ecosystem C balance. Furthermore, biocrusts are not resilient to physical disturbances, which generally cause the loss of the biocrust and thus, an increase in runoff and erosion, dust emissions, and sediment and nutrient losses. The aim of this study was to find out the influence of biocrusts and their removal on dissolved and sediment organic carbon losses. One-hour extreme rainfall simulations (50 mm h-1) were performed on small plots set up on physical soil crusts and three types of biocrusts, representing a development gradient, and also on plots where these crusts were removed from. Runoff and erosion rates, dissolved organic carbon (DOC) and organic carbon bonded to sediments (SdOC) were measured during the simulated rain. Our results showed different SdOC and DOC for the different biocrusts and also that the presence of biocrusts substantially decreased total organic carbon (TOC) (average 1.80±1.86 g m-2) compared to physical soil crusts (7.83±3.27 g m-2). Within biocrusts, TOC losses decreased as biocrusts developed, and erosion rates were lower. Thus, erosion drove TOC losses while no significant direct relationships were found between TOC losses and runoff. In both physical crusts and biocrusts, DOC and SdOC concentrations were higher during the first minutes after runoff began and decreased over time as nutrient-enriched fine particles were washed away by runoff water. Crust removal caused a strong increase in water erosion and TOC losses. The strongest impacts on TOC losses after crust removal occurred on the lichen plots, due to the increased erosion when they were removed. DOC concentration was higher in biocrust-removed soils than in intact biocrusts, probably because OC is more strongly retained by BSC structures, but easily blown away in soils devoid of them. However, SdOC concentration was higher in intact than removed biocrusts associated with greater OC content in the top crust than in the soil once the crust is scraped off. and Consequently, the loss of biocrusts leads to OC impoverishment of nutrient-limited interplant spaces in arid and semiarid areas and the reduction of soil OC heterogeneity, essential for vegetation productivity and functioning of this type of ecosystems.
Hydrological processes play important roles in soil erosion processes of the hillslopes. This study was conducted to investigate the hydrological processes and the associated erosional responses on the purple soil slope. Based on a comprehensive survey of the Wangjiaqiao watershed in the Three Gorges Reservoir, four typical slope gradients (5°, 10°, 15°and 20°) were applied to five rainfall intensities (0.6, 1.1, 1.61, 2.12 and 2.54 mm·min-1). The results showed that both surface and subsurface runoff varied greatly depending on the rainfall intensity and slope gradient. Surface runoff volume was 48.1 to 280.1 times of that for subsurface runoff. The critical slope gradient was about 10°. The sediment yield rate increased with increases in both rainfall intensity and slope gradient, while the effect of rainfall intensity on the sediment yield rate was greater than slope gradient. There was a good linear relationship between sediment yield rate and Reynolds numbers, flow velocity and stream power, while Froude numbers, Darcy-Weisbach and Manning friction coefficients were not good hydraulic indicators of the sediment yield rate of purple soil erosion. Among the three good indicators (Re, v and w), stream power was the best predictor of sediment yield rate (R2 = 0.884). Finally, based on the power regression relationship between sediment yield rate, runoff rate, slope gradient and rainfall intensity, an erosion model was proposed to predict the purple soil erosion (R2 = 0.897). The results can help us to understand the relationship between flow hydraulics and sediment generation of slope erosion and offer useful data for the building of erosion model in purple soil.
In response to the continually increasing sediment concentrations in rivers and lakes, the Ethiopian government is leading an effort where farmers are installing soil and water conservation measures to increase infiltration and reduce erosion. This paper reports on findings from a four year study in the 95 ha Debre Mawi watershed where under the government led conservation works, mainly terraces with infiltration furrows were installed halfway in the period of observation. The results show that runoff volume decreased significantly after installation of the soil and water conservation practices but sediment concentration decreased only marginally. Sediment loads were reduced mainly because of the reduced runoff. Infiltration furrows were effective on the hillsides where rain water could infiltrate, but on the flat bottom lands that become saturated with the progress of the monsoon rain, infiltration was restricted and conservation practices became conduits for carrying excess rainfall. This caused the initiation of gullies in several occasions in the saturated bottomlands. Sediment concentration at the outlet barely decreased due to entrainment of loose soil from unstable banks of gullies in the periodically saturated bottom areas. Since most uphill drainage were already half filled up with sediments after two years, long term benefits of reducing runoff can only be sustained with continuous maintenance of uphill infiltration furrows.
Soil sealing is the permanent covering of the land surface by buildings, infrastructures or any impermeable artificial material. Beside the loss of fertile soils with a direct impact on food security, soil sealing modifies the hydrological cycle. This can cause an increased flooding risk, due to urban development in potential risk areas and to the increased volumes of runoff. This work estimates the increase of runoff due to sealing following urbanization and land take in the plain of Emilia Romagna (Italy), using the Green and Ampt infiltration model for two rainfall return periods (20 and 200 years) in two different years, 1976 and 2008. To this goal a hydropedological approach was adopted in order to characterize soil hydraulic properties via locally calibrated pedotransfer functions (PTF). PTF inputs were estimated via sequential Gaussian simulations coupled with a simple kriging with varying local means, taking into account soil type and dominant land use. Results show that in the study area an average increment of 8.4% in sealed areas due to urbanization and sprawl induces an average increment in surface runoff equal to 3.5 and 2.7% respectively for 20 and 200-years return periods, with a maximum > 20% for highly sealed coast areas.
Providing information on the impacts of climate change on hydrological processes is becoming ever more critical. Modelling and evaluating the expected changes of the water resources over different spatial and time scales can be useful in several fields, e.g. agriculture, forestry and water management. Previously a Budyko-type spatially distributed long-term climate-runoff model was developed for Hungary. This research includes the validation of the model using historical precipitation and streamflow measurements for three nested sub-catchments of the Zala River Basin (Hungary), an essential runoff contributing region to Lake Balaton (the largest shallow lake in Central Europe). The differences between the calculated (from water balance) and the estimated (by the model) mean annual evapotranspiration varied between 0.4% and 3.6% in the validation periods in the sub-catchments examined. Predictions of the main components of the water balance (evapotranspiration and runoff) for the Zala Basin are also presented in this study using precipitation and temperature results of 12 regional climate model simulations (A1B scenario) as input data. According to the projections, the mean annual temperature will be higher from period to period (2011–2040, 2041–2070, 2071–2100), while the change of the annual precipitation sum is not significant. The mean annual evapotranspiration rate is expected to increase slightly during the 21st century, while for runoff a substantial decrease can be anticipated which may exceed 40% by 2071–2100 relative to the reference period (1981–2010). As a result of this predicted reduction, the runoff from the Zala Basin may not be enough to balance the increased evaporation rate of Lake Balaton, transforming it into a closed lake without outflow.
Hydrologic cycle in the Liz catchment is described with an anomaly in the vegetation seasons 1992-1996. Experimental catchment Liz is located in the Šumava Mts. in the Czech Republic. The fully forested watershed is covered by mature spruce forest, and its basic characteristics are as follows: drainage area 0.99 km2, mean discharge 0.01m3 s-1, runoff coefficient 0.38, mean annual air temperature 6.30 oC, average slope 17 %, basin length 1.45 km, water course length 1.43 km, elevation 828-1074 m a.s.l., precipitation sum 851 mm year-1, and runoff depth 324 mm year-1. Air temperature, precipitation, global radiation, and discharge in the closing profile are measured in the catchment. It is characteristic for hydrologic cycle in the catchment that the share of seasonal sums of both the global radiation and temperature was nearly constant in 1983-2000. However, the seasonal sums of both the global radiation and temperature were changed considerably in 1983-2000. Similarly, the share of seasonal sums of both the rainfall and runoff was nearly constant in 1983-1991 and 1997-1999. An anomalous course of climate was registered in 1992-1996, manifested by a deviation on the double mass curve of the seasonal sums of rainfall and runoff. Stabilised elsewhere, the ratio of rainfall and runoff is changed during the vegetation seasons 1992-1996. Starting from the 1997 season, this ratio has obtained the value held before 1992. The reason of the 1992-1996 anomaly of hydrologic cycle in the experimental catchment had to be significant external phenomenon, most likely explosion of the Mount Pinatubo volcano in Philippines on June 15, 1991. and Hydrologic cycle in the Liz catchment is described with an anomaly in the vegetation seasons 1992- 1996. Experimental catchment Liz is located in the Šumava Mts. in the Czech Republic. The fully forested watershed is covered by mature spruce forest, and its basic characteristics are as follows: drainage area 0.99 km2 , mean discharge 0.01m3 s -1, runoff coefficient 0.38, mean annual air temperature 6.30 ºC, average slope 17 %, basin length 1.45 km, water course length 1.43 km, elevation 828-1074 m a.s.l., precipitation sum 851 mm year-1, and runoff depth 324 mm year-1. Air temperature, precipitation, global radiation, and discharge in the closing profile are measured in the catchment. It is characteristic for hydrologic cycle in the catchment that the share of seasonal sums of both the global radiation and temperature was nearly constant in 1983-2000. However, the seasonal sums of both the global radiation and temperature were changed considerably in 1983-2000. Similarly, the share of seasonal sums of both the rainfall and runoff was nearly constant in 1983-991 and 1997-1999. An anomalous course of climate was registered in 1992-1996, manifested by a deviation on the double mass curve of the seasonal sums of rainfall and runoff. Stabilised elsewhere, the ratio of rainfall and runoff is changed during the vegetation seasons 1992-1996. Starting from the 1997 season, this ratio has obtained the value held before 1992. The reason of the 1992-1996 anomaly of hydrologic cycle in the experimental catchment had to be significant external phenomenon, most likely explosion of the Mount Pinatubo volcano in Philippines on June 15, 1991.
Rain is not uniform in time and space in semiarid areas and its distribution is very important for the runoff process. Hydrological studies usually divide rainfall into events. However, defining rain events is complicated, and rain characteristics vary depending on how the events are delimited. Choosing a minimum inter-event time (MIT) is a commonly used criterion. Our hypothesis is that there will be an optimal MIT that explains the maximum part of the variance of the runoff, with time to runoff used as a surrogate. The objective is to establish a procedure in order to decide upon this optimal MIT. We developed regressions between time to runoff (T0) and three descriptive variables of rain. Our results show that the optimum MIT is 1 hour, which seems to be the minimum period of time required for water in larger macropores to drain and sufficiently modify the effect of antecedent soil moisture on the runoff generation process. Rain events are classified into three significantly different groups: (1) large and intense rains, (2) light rains on wet soil, and (3) light rains on dry soil. Intense rains produce most of the runoff, but there were significant differences between small events in the runoff generated. Of rain events, 63.75% are single-tip events, and many could be dew.