A simple yet powerful procedure for an echo attenuation in signals is introduced. The presented method involves no external reference signal. It is based on comb FIR filtering. To the advantages of the described method belong the simplicity and performance which are beneficial in real time implementations. For illustration, a simulation of the procedure is included. The efficiency of the presented method is demonstrated by a real time implementation on a digital signal processor.
Let $C[0,T]$ denote the space of real-valued continuous functions on the interval $[0,T]$ with an analogue $w_\varphi $ of Wiener measure and for a partition $ 0=t_0< t_1< \cdots < t_n <t_{n+1}= T$ of $[0, T]$, let $X_n\: C[0,T]\to \mathbb R^{n+1}$ and $X_{n+1} \: C [0, T]\to \mathbb R^{n+2}$ be given by $X_n(x) = ( x(t_0), x(t_1), \cdots , x(t_n))$ and $X_{n+1} (x) = ( x(t_0), x(t_1), \cdots , x(t_{n+1}))$, respectively. \endgraf In this paper, using a simple formula for the conditional $w_\varphi $-integral of functions on $C[0, T]$ with the conditioning function $X_{n+1}$, we derive a simple formula for the conditional $w_\varphi $-integral of the functions with the conditioning function $X_n$. As applications of the formula with the function $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions of the form $F_m(x) = \int _0^T (x(t))^m d t$ for $x\in C[0, T]$ and for any positive integer $m$. Moreover, with the conditioning $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions in a Banach algebra $\mathcal S_{w_\varphi }$ which is an analogue of the Cameron and Storvick's Banach algebra $\mathcal S$. Finally, we derive the conditional analytic Feynman $w_\varphi $-integrals of the functions in $\mathcal S_{w_\varphi }$.
We show that a transformation method relating planar first-order differential systems to second order equations is an effective tool for finding non-liouvillian first integrals. We obtain explicit first integrals for a subclass of Kukles systems, including fourth and fifth order systems, and for generalized Liénard-type systems.
Let $T$ be a locally compact Hausdorff space and let $C_0(T)$ be the Banach space of all complex valued continuous functions vanishing at infinity in $T$, provided with the supremum norm. Let $X$ be a quasicomplete locally convex Hausdorff space. A simple proof of the theorem on regular Borel extension of $X$-valued $\sigma $-additive Baire measures on $T$ is given, which is more natural and direct than the existing ones. Using this result the integral representation and weak compactness of a continuous linear map $u\: C_0(T) \rightarrow X$ when $c_0 \lnot \subset X$ are obtained. The proof of the latter result is independent of the use of powerful results such as Theorem 6 of [6] or Theorem 3 (vii) of [13].
In 1932 Whitney showed that a graph G with order n ≥ 3 is 2-connected if and only if any two vertices of G are connected by at least two internally-disjoint paths. The above result and its proof have been used in some Graph Theory books, such as in Bondy and Murty’s well-known Graph Theory with Applications. In this note we give a much simple proof of Whitney’s Theorem.
The nonhomogeneous backward Cauchy problem $$u_t +Au(t) = f(t),\quad u(T) = \varphi$$, where $A$ is a positive self-adjoint unbounded operator which has continuous spectrum and $f$ is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.
We present a simplified integral of functions of several variables. Although less general than the Riemann integral, most functions of practical interest are still integrable. On the other hand, the basic integral theorems can be obtained more quickly. We also give a characterization of the integrable functions and their primitives.
The paper deals with the rotor vibration in journal bearings to prepare a model for verifying the rotor vibration active control. The rotor is maintained in equilibrium position by forces generated in oil film. Bearing forces can be modelled as a spring and damper system. The main goal of the simulation study is to verify the model principle and to estimate parameters by comparing simulation results with experimental data, namely the instability of motion. Test stand with rotor supported in two journal bearings was designed for these purposes. The stand will be equipped with four piezoactuators enabling excitation of bearings by practically arbitrary dynamic force. Theoretical analysis of the influence of external excitation on rotor behaviour was carried out. Up to now the study shows that simple kinematic excitation is effective for reducing rotor excursion while passing critical speeds. To suppress self-exciting vibration of the rotor it is necessary to look for more sophisticated solution. and Obsahuje seznam literatury