Parasitic infections of the South China tigers in the Meihua Mountains have not been explored previously. Faeces of 22 South China tigers from the China Tiger Park in the Meihua Mountains were examined. Eggs of ascaridoid nematodes and oocysts of coccidia were detected by Mini-FLOTAC assay. Morphological observation and molecular characterisation of the oocysts were carried out. The prevalence of Toxascaris leonina (von Linstow, 1902) was 18% (4/22), and the highest egg per gram (EPG) count in the faeces was 27,150. The prevalence of Cystoisospora sp. was 45% (1 0/22) and the highest oocysts per gram (OPG) in the faeces was 6,000. In addition, we found one ascaridoid nematode in the South China tiger's faeces and was molecularly and morphologically identified as T. leonina. The oocysts in the faeces were sporulated in vitro and identified as Cystoisospora sp. Amplification of full-length internal transcribed spacers (ITS) resulted in sequences 1,622 bp long. Using the sequences, Cystoisospora sp. of the South China tiger was closest to Isospora belli (Wenyon, 1923) and Cystoisospora suis (Biester, 1934).
Large amounts of antibiotics and microplastics are used in daily life and agricultural production, which affects not only plant growth but also potentially the food safety of vegetables and other plant products. Fast detection of the presence of antibiotics and microplastics in leafy vegetables is of great interest to the public. In this work, a method was developed to detect sulfadiazine and polystyrene, commonly used antibiotics and microplastics, in vegetables by measuring and modeling photosystem II chlorophyll a fluorescence (ChlF) emission from leaves. Chrysanthemum coronarium L., a common beverage and medicinal plant, was used to verify the developed method. Scanning electron microscopy, transmission electron microscopy, and liquid chromatograph-mass spectrometer analysis were used to show the presence of the two pollutants in the samples. The developed kinetic model could describe measured ChlF variations with an average relative error of 0.6%. The model parameters estimated for the chlorophyll a fluorescence induction kinetics curve (OJIP) induction can differentiate the two types of stresses while the commonly used ChlF OJIP induction characteristics cannot. This work provides a concept to detect antibiotic pollutants and microplastic pollutants in vegetables based on ChlF.
In recent years, an emerging dermocystidiosis caused by Dermocystidium anguillae Spangenberg, 1975 has been found to pose a threat to the culture of American eel, Anguilla rostrata (Lesueur), as well as Chinese perch, Siniperca chuatsi (Basilewsky), in China. Dermocystidium anguillae was originally described from European eel, Anguilla anguilla (Linnaeus), and it is thus important to identify the possible source of this pathogen. In the present study, we compared D. anguillae from European eels cultured in China with those from American eels. Molecular analysis showed that the SSU rDNA of D. anguillae infecting European eels was identical to that of D. anguillae infecting American eels, suggesting their conspecificity. To investigate the source of D. anguillae causing dermocystidiosis in American eels cultured in China, a specific PCR assay for the detection of D. anguillae was developed with high sensitivity (10-6 ng/µl of D. anguillae genomic DNA). Using the present molecular detection method, the water and sediment of culture ponds, fish feed and American eel elvers imported from America were screened for the presence of D. anguillae. No amplicons were detected from the water, sediment and fish feed samples. However, positive amplicons were found in American eel elvers, indicating that D. anguillae has been introduced from American eel elvers to China. It is suggested that American eel elvers imported from America should be examined for the presence of D. anguillae before their exportation abroad to prevent the spread of this pathogen.
The presence of Neospora caninum Dubey, Carpenter, Speer, Topper et Uggla, 1988 in small mammals (i.e. murid rodents, Erinaceomorpha, Eulipotyphla and Scadentia) was explored for first time in South-East Asia. A total of 192 individuals from six localities across Thailand were analysed. A general prevalence of N. caninum of 22% was observed, with some variation among localities (5-36%). Four main types of habitat were included and rodents trapped in dry-land habitat (17 positive among 41 individuals) were more likely to be infected with N. caninum than those from other habitats (forest, rain-fed land and settlement). Rodent species identity and individual rodent weight had no influence on individual infection. Our results provided the first data on the presence of N. caninum in rodents in South-East Asia and first report of N. caninum in the order Scadentia., Ornampai Japa, Serge Morand, Anamika Karnchanabanthoeng, Kittipong Chaisiri, Alexis Ribas., and Obsahuje bibliografii
Fluorescence in situ hybridization (FISH) is a technique used to determine the chromosomal position of DNA and RNA probes. The present study contributes to knowledge on jumping plant-lice genomes by using FISH with 18S rDNA and telomeric (TTAGG)n probes on meiotic chromosomes of Psylla alni (2n = 24 + X), Cacopsylla mali (2n = 22 + neo-XY and 20 + neo-X1X2Y), C. sorbi (2n = 20 + neo-XY), Baeopelma foersteri (2n = 14 + X), and Rhinocola aceris (2n = 10 + X). This is the first study that has used FISH on the hemipteran superfamily Psylloidea. We found that the chromosomes of all studied species contain the insect-type telomere motif, (TTAGG)n. In C. mali and C. sorbi, the neo-sex chromosomes originating from autosome-sex chromosome fusions showed no interstitially located clusters of TTAGG repeats, suggesting their loss or inactivation. Similarly, no interstitial (TTAGG)n clusters were detected in an extremely large autosome pair of B. foersteri that most likely originated from a fusion of at least five ancestral chromosome pairs. Clusters of 18S rDNA were detected on the fused and second largest autosome pairs of B. foersteri and on one of the large autosome pairs of the remaining species. In C. mali and B. foersteri, the rDNA clusters were shown to coincide with the NORs as detected by the AgNOR method. Finally, we speculate, based on the obtained FISH markers, on the mechanisms of karyotype evolution of psylloid species differing in chromosome numbers and sex chromosome systems., Anna Maryańska-Nadachowska, Valentina G. Kuznetsova, Natalia V. Golub, Boris A. Anokhin., and Obsahuje bibliografii
The Tomsk region located in the south of Western Siberia is one of the most high-risk areas for tick-borne diseases due to elevated incidence of tick-borne encephalitis and Lyme disease in humans. Wild birds may be considered as one of the reservoirs for tick-borne pathogens and hosts for infected ticks. A high mobility of wild birds leads to unpredictable possibilities for the dissemination of tick-borne pathogens into new geographical regions. The primary goal of this study was to evaluate the prevalence of tick-borne pathogens in wild birds and ticks that feed on them as well as to determine the role of different species of birds in maintaining the tick-borne infectious foci. We analysed the samples of 443 wild birds (60 species) and 378 ticks belonging to the genus Ixodes Latraille, 1795 collected from the wild birds, for detecting occurrence of eight tick-borne pathogens, the namely tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and species of Borrelia, Rickettsia, Ehrlichia, Anaplasma, Bartonella and Babesia Starcovici, 1893, using RT-PCR/or PCR and enzyme immunoassay. One or more tick-borne infection markers were detected in 43 species of birds. All markers were detected in samples collected from fieldfare Turdus pilaris Linnaeus, Blyth's reed warbler Acrocephalus dumetorum Blyth, common redstart Phoenicurus phoenicurus (Linnaeus), and common chaffinch Fringilla coelebs Linnaeus. Although all pathogens have been identified in birds and ticks, we found that in the majority of cases (75.5 %), there were mismatches of pathogens in birds and ticks collected from them. Wild birds and their ticks may play an extremely important role in the dissemination of tick-borne pathogens into different geographical regions., Igor G. Korobitsyn, Nina S. Moskvitina, Oleg Yu. Tyutenkov, Sergey I. Gashkov, Yulia V. Kononova, Sergey S. Moskvitin, Vladimir N. Romanenko, Tamara P. Mikryukova, Elena V. Protopopova, Mikhail Yu. Kartashov, Eugene V. Chausov, Svetlana N. Konovalova, Natalia L. Tupota, Alexandra O. Sementsova, Vladimir A. Ternovoi, Valery B. Loktev., and Obsahuje bibliografii
Brain edema is a fatal pathological state in which brain volume increases as a result of abnormal accumulation of fluid within the brain parenchyma. A key attribute of experimentally induced brain edema – increased brain water content (BWC) – needs to be verified. Various methods are used for this purpose: specific gravimetric technique, electron microscopic examination, magnetic resonance imaging (MRI) and dry/wet weight measurement. In this study, the cohort of 40 rats was divided into one control group (CG) and four experimental groups with 8 rats in each group. The procedure for determining BWC using dry/wet weight measurement was initiated 24 h after the completion of edema induction by the water intoxication method (WI group); after the intraperitoneal administration of Methylprednisolone (MP) together with distilled water during edema induction (WI+MP group); 30 min after osmotic blood brain barrier disruption (BBBd group); after injection of MP via the internal carotid artery immediately after BBBd (BBBd + MP group). While induction of brain edema (WI, BBBd) resulted in significantly higher BWC, there was no increase in BWC in the MP groups (WI+MP, BBBd+MP), suggesting a neuroprotective effect of MP in the development of brain edema.
Chronic hepatitis B (CHB) is caused by the Hepatitis B virus (HBV) and affects millions of people worldwide. Developing an effective CHB therapy requires using in vivo screening methods, such as mouse models reflecting CHB based on hydrodynamic delivery of plasmid vectors containing a replication-competent HBV genome. However, long-term expression of HBV proteins is accompanied by production of progeny virions, thereby requiring a Biosafety Level (BSL) 3 animal facility. In the present study, we introduced a point mutation in the START codon of the HBV polymerase to develop a mouse model reflecting chronic hepatitis B infection without formation of viral progeny. We induced the mouse model by hydrodynamic injection of adeno-associated virus plasmid vector (pAAV) and minicircle plasmid (pMC) constructs into C57Bl/6 and C3H/HeN mouse strains, monitoring HBV antigens and antibodies in blood by enzyme-linked immunosorbent assay and analyzing liver expression of HBV core antigen by immunohistology. Persisting expression of viral antigens over 140 days (study endpoint) was observed only in the C3H/HeN mouse strain when using pAAV/1.2HBV-A and pMC/1.0HBV-D with pre-C and pre-S recombination sites. In addition, pAAV/1.2HBV-A in C3H/HeN sustained HBV core antigen positivity up to the study endpoint in C3H/HeN mice. Moreover, introducing the point mutation in the START codon of polymerase effectively prevented the formation of viral progeny. Our study establishes an accessible and affordable experimental paradigm for developing a robust mouse model reflecting CHB suitable for preclinical testing of anti-HBV therapeutics in a BSL2 animal facility.
Borrelia burgdorferi sensu lato (s.l.) is the etiological agent of Lyme disease, transmitted by ticks of the genus Ixodes Latreille. Diagnosis of Lyme disease in humans is often difficult and a detailed knowledge of the circulation of B. burgdorferi s.l. in tick hosts is therefore fundamental to support clinical procedures. Here we developed a molecular approach for the detection of B. burgdorferi s.l. in North Italian Ixodes ricinus (Linnaeus). The method is based on the amplification of a fragment of the groEL gene, which encodes a heat-shock protein highly conserved among B. burgdorferi s.l. species. The tool was applied in both qualitative and Real-time PCR approaches testing ticks collected in a North Italian area. The obtained results suggest that this new molecular tool could represent a sensitive and specific method for epidemiological studies aimed at defining the distribution of B. burgdorferi s.l. in I. ricinus and, consequently, the exposure risk for humans.
Monoclonal antibody specific for an epitope of cretory-secretory antigen protein of Opisthorchis felineus (Rivolta, 1884) (Trematoda: Opisthorchiidae) with a molecular weight of 28 kDa was used in a sandwich enzyme-linked immunosorbent assay (ELISA) for immobilisation of liver fluke specific antigen to the solid phase. Examination of human sera by this ELISA compared with commercial assays demonstrated that the monoclonal antibody epitope is located within this significant parasite protein. Anti-idiotypic antibody specific for the paratope of this monoclonal antibody was obtained by a hybridoma technique. Mimicking an epitope of excretory-secretory antigen of O. felineus, it had the capacity to bind specific antibody and elicit an antibody response. The value of anti-idiotypic antibody as a substitute for the liver fluke antigen was tested by ELISA using serum samples of infected dogs. Anti-idiotypic antibody proved to be of value in both an indirect-ELISA and a competitive-ELISA for diagnosis of opisthorchiasis. Mature trematodes were isolated from all infected animals. The faecal egg counts were negative in dogs with a relatively small number of parasites, despite finding antibodies in serum by ELISA. Substitution of parasite antigen with anti-idiotype avoids the use of experimental animals and also reduces time-consuming steps of antigen preparation., Aitbay K. Bulashev, Sergey N. Borovikov, Shynar S. Serikova, Zhanbolat A. Suranshiev, Vladimir S. Kiyan, Saule Z. Eskendirova., and Obsahuje bibliografii