North to south migration in the U.S. and housing developers’ claims of benefits led to exponential growth in neighbourhood homeowners associations during recent decades. Sanctioned by state laws, association rules governing homeowners are usually initiated by developers who claim that the rules protect property values. But the claim is not supported by empirical analysis. Inflation adjusted annual percentage returns in consecutive sales of a sample of 900 most recent home sales in Duval County Florida, Pima County Arizona and St. Louis County Missouri during late 2017 and early-2018 were examined. The results revealed that the annual percentage returns on homes sold in homeowners associations were significantly less than those of homes in other neighbourhoods statistically controlling for property characteristics and prevailing economic conditions at the time of the original purchase. Correlates of home prices at any point in time are not predictive of percentage return from purchase to sale.
The cough reflex is an airway defensive process that can be
modulated by afferent inputs from organs located also out of the
respiratory system. A bidirectional relationship between cough
and heart dysfunctions are presented in the article, with the
special insights into an arrhythmia-triggered cough. Albeit rare,
cough induced by cardiac pathologies (mainly arrhythmias)
seems to be an interesting and underestimated phenomenon.
This condition is usually associated with the presence of
abnormal heart rhythms and ceases with successful treatment of
arrhythmia either by pharmacotherapy or by radiofrequency
ablation of arrhythmogenic substrate. The two main hypotheses
on cough-heart relationships – reflex and hemodynamic - are
discussed in the review, including the authors’ perspective based
on the experiences with an arrhythmia-triggered cough.
Individual studies have suggested the utility of fractional exhaled nitric oxide (FeNO) measurement in detecting cough-variant asthma and eosinophilic bronchitis in patients with chronic cough. The aim of this study was to clarify a correlation of cough reflex sensitivity and fractional exhaled nitric oxide in asthmatic children. 25 children with asthma and 15 controls were submitted to cough reflex sensitivity measurement – capsaicin aerosol in doubling concentrations (from 0.61 to 1250 µmol/l) was inhaled by a single breath method. Concentrations of capsaicin causing two (C2) and five coughs (C5) were reported. Fractional exhaled nitric oxide (FeNO) measurement was included. Asthmatic children (11 boys and 14 girls, mean age 9±1 years) and control group (unconfirmed diagnosis of asthma) (6 boys and 9 girls, mean age 8±1 years) were included into the study. FeNO vs. C2 in asthma (Spearman´s rank correlation: -0.146, p=0.49); FENO vs. C5 in asthma (Spearman´s rank correlation: -0.777, p=0.71). We found that there is no correlation between cough reflex sensitivity and fractional exhaled nitric oxide either in children with asthma or in the control group.
New knowledge about the neural aspects of cough has revealed
a complex network of pathways that initiate cough. The effect of
inflammation on cough neural processing occurs at multiple
peripheral and central sites within the nervous system. Evidence
exists that direct or indirect neuroimmune interaction induces
a complex response, which can be altered by mediators released
by the sensory or parasympathetic neurons and vice versa. The
aim of this study was to clarify changes of cough reflex sensitivity
– the activity of airway afferent nerve endings - in asthmatic
children. 25 children with asthma and 15 controls were submitted
to cough reflex sensitivity measurement - capsaicin aerosol in
doubling concentrations (from 0.61 to 1250 µmol/l) was inhaled
by a single breath method. Concentrations of capsaicin causing
two (C2) and five coughs (C5) were reported. Asthmatic children'
(11 boys and 14 girls, mean age 9 ± 1 yrs) cough reflex sensitivity
(geometric mean, with the 95 % CI) for C2 was 4.25 (2.25-8.03)
µmol/l vs. control C2 (6 boys and 9 girls, mean age 8 ± 1 yrs) was
10.61 (5.28-21.32) µmol/l (p=0.024). Asthmatic children' C5 was
100.27 (49.30-203.93) µmol/l vs. control C5 56.53 (19.69-162.35)
µmol/l (p=0.348). There was a statistically significant decrease of
C2 (cough threshold) in the asthmatic patients relative to controls
(p-value for the two-sample t-test of log(C2) for the one-sided
alternative, p-value = 0.024). The 95 % confidence interval for the
difference of the mean C2 in asthma vs. control, [1.004, 6.207].
For C5, the difference was not statistically significant (p-value =
0.348). There was a statistically significant decrease of cough
reflex sensitivity (the activity of airway afferent nerve endings) -
C2 value in the asthmatic children relative to controls.
Increasing evidence points to host genetics as a factor in COVID19 prevalence and outcome. CCR5 is a receptor for proinflammatory chemokines that are involved in host responses, especially to viruses. The CCR5 Δ32 minor allele is an interesting variant, given the role of CCR5 in some viral infections, particularly HIV-1. Recent studies of the impact of CCR5-Δ32 on COVID-19 risk and severity have yielded contradictory results. This ecologic study shows that the CCR5-Δ32 allelic frequency in a European population was significantly negatively correlated with the number of COVID-19 cases (p=0.035) and deaths (p=0.006) during the second pandemic wave. These results suggest that CCR5-Δ32 may be protective against SARS-CoV-2 infection, as it is against HIV infection, and could be predictive of COVID-19 risk and severity. Further studies based on samples from populations of different genetic backgrounds are needed to validate these statistically obtained findings.
In the present study, the effect of polycyclic musk compound tonalide (AHTN) in two concentrations was studied in male rainbow trout (Oncorhynchus mykiss, Walbaum 1792). A feeding trial was conducted with AHTN incorporated into feed granules. One concentration was environmentally relevant (854 µg/kg); the second one was 10× higher (8699 µg/kg). The fish were fed twice a day with the amount of feed at 1 % of their body weight. After an acclimatization period, the experimental phase in duration of six weeks followed. At the end of the experiment, fish were sampled and the biometrical data were recorded. Subsequently, hematological and biochemical tests, histopathological examination, analysis of oxidative stress markers and evaluation of endocrine disruption using plasma vitellogenin were performed. In conclusion, an increase of hematocrit for both AHTN concentrations was found, but no significant changes were observed in biochemical profile. Moreover, AHTN caused lipid peroxidation in caudal kidney tissue, which was confirmed by histopathological images. The long-lasting AHTN exposure could thus be harmful for maintaining homeostasis in the rainbow trout organism. However, the vitellogenin concentration seemed not to be affected by AHTN.
The SARS-CoV-2 pandemic has indeed been one of the most significant problems facing the world in the last decade. It has affected (directly or indirectly) the entire population and all age groups. Children have accounted for 1.7 % to 2 % of the diagnosed cases of COVID-19. COVID-19 in children is usually associated with a mild course of the disease and a better survival rate than in adults. In this review, we investigate the different mechanisms which underlie this observation. Generally, we can say that the innate immune response of children is strong because they have a trained immunity, allowing the early control of infection at the site of entry. Suppressed adaptive immunity and a dysfunctional innate immune response is seen in adult patients with severe infections but not in children. This may relate to immunosenescence in the elderly. Another proposed factor is the different receptors for SARS-CoV-2 and their differences in expression between these age groups. In infants and toddlers, effective immune response to viral particles can be modulated by the pre-existing non-specific effect of live attenuated vaccines on innate immunity and vitamin D prophylaxis. However, all the proposed mechanisms require verification in larger cohorts of patients. Our knowledge about SARS-CoV-2 is still developing.
A close interaction between the virus SARS-CoV-2 and the
immune system of an individual results in a diverse clinical
manifestation of the COVID-19 disease. While adaptive immune
responses are essential for SARS-CoV-2 virus clearance, the
innate immune cells, such as macrophages, may contribute, in
some cases, to the disease progression. Macrophages have
shown a significant production of IL-6, suggesting they may
contribute to the excessive inflammation in COVID-19 disease.
Macrophage Activation Syndrome may further explain the high
serum levels of CRP, which are normally lacking in viral
infections. In adaptive immune responses, it has been revealed
that cytotoxic CD8+ T cells exhibit functional exhaustion patterns,
such as the expression of NKG2A, PD-1, and TIM-3. Since SARSCoV-2 restrains antigen presentation by downregulating
MHC class I and II molecules and, therefore, inhibits the T cellmediated immune responses, humoral immune responses also
play a substantial role. Specific IgA response appears to be
stronger and more persistent than the IgM response. Moreover,
IgM and IgG antibodies show similar dynamics in COVID-19
disease.
Knowledge of genomic interindividual variability could help us to explain why different manifestation of clinical severity of Covid-19 infection as well as modified pharmacogenetic relations can be expected during this pandemic condition.
Few peculiarities have been observed in the etiology of coronavirus disease 2019 (COVID-19), one such being its greater prevalence in men than women partly due to the higher expressions of angiotensin-converting enzyme-2 (ACE2) in the male reproductive tissues. Recent scientific reports are in line with some of the evidence-based hypotheses in the initial phase of the COVID-19 pandemic, regarding the involvement of oxidative stress (OS) and oxidant-sensitive pathways in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-mediated male reproductive disruptions. The seminal dissemination of SARS-CoV-2 or its components, testicular disruptions due to viral infection and oxidative damage in the testis have all been evidenced recently. High-dose of antioxidants, such as vitamin C, have been shown to be a useful treatment for COVID-19 patients, to alleviate systemic inflammation and OS. In addition, vitamin C is a major testicular antioxidant that neutralizes excess reactive oxygen species (ROS), prevents sperm agglutination, prevents lipid peroxidation, recycles vitamin E, and protects against DNA damage. Thus, the present review aims to discuss the mechanism of COVID-19- mediated male reproductive dysfunctions, based on the evidence available so far, and explore the possibility of using vitamin C in alleviating testicular OS and associated damage caused by COVID-19.