a1_Phyllosilicates are classified into the following groups: 1 - Neutral 1:1 structures: the kaolinite and serpentine group. 2 - Neutral 2:1 structures: the pyrophyllite and talc group. 3 - High-charge 2:1 structures, non-expansible in polar liquids: illite and the dioctahedral and trioctahedral micas, also brittle micas. 4 - Low- to medium-charge 2:1 structures, expansible phyllosilicates in polar liquids: smectites and vermiculites. 5 - Neutral 2:1:1 structures: chlorites. 6 - Neutral to weak-char ge ribbon structures, so-called pseudophyllosilicates or hormites: palygorskite and sepiolite (fibrous crystalline clay minerals ). 7 - Amorphous clay minerals. Order-disorder states, polymorphism, polytypism, and inters tratifications of phyllosilicates are influenced by several factors: 1) a chemical micromilieu acting during the crystallization in any environment, including the space of clay pseudomorphs after original rock-forming silicates or volcanic glasses; 2) the accepted thermal energy; 3) the permeability. The composition and properties of parent rocks and minerals in the weathering crusts, the elevation, and topography of source areas and climatic conditions control the in tensity of weathering, erosion, and there sulting assemblage of phyllosilicates to be transported after erosion. The enormously high accumulation of phyllosilicates in the sedimentary lithosphere is primarily conditioned by their high up to extremely high chemical stability in water-rich environments (expressed by index of corrosion, IKO). Clastic material eroded fro m weathering crusts and transported in rivers contains overwhelming amounts of phyllosilicates inherited from original rocks. In geological literature, the newly formed phyllosilicates crystallizing in weathering crusts including soils as dominating global source of argillaceous lutite accumulations in the sedimentary lithosphere have been overestimate for a long time., a2_The dissolution of silicates in different dense rocks under conditions of weathering and the crystallization of newly formed phyllosilicates has been strongly and for long periods influenced by chemical microenvironments within each clay pseudomorph. Coarser fragments of eroded argillaceous rocks and crystals of phyllosilicates from different bedrocks and soils are very sensitive to impacts and pressure from fragments of co-transported harder and denser rocks and minerals in turbulent fluvial and similar currents. This is the most important mechanical phenomenon supporting the enormous accumulation of lutite rocks rich in phyllosilicates in the sedimentary lithosphere. The summarized new observations and interpre tations are stressed in eleven key poin ts. Erosion and water transportation of detrital material are explained in the terms of hydration, softening, swelling, physical disintegration, grinding, milling, abrasion, delamination, dispersi on, and sorting. The deposition of phyllosilicates in different fluid dynamics of streams is expressed by Re and Fr numbers and explained as unflocculated and floccu lated suspensions. Phyllosilicates an d accompanying detrital minerals in recent marine muds covering vast areas of seas and oceans as well as in lacustrine muds correspond with those transpor ted in fluvial suspensions., Jiří Konta., and Obsahuje bibliografické odkazy
Phylogenetic relationships within the suborder Trypanosomatina were inferred from the kinetoplast DNA minicircle conserved region sequences. Trees built using distancc-matrix (Neighbor-Joining) and maximum parsimony methods showed that the minicircle conserved regions (CRs) provide a sensitive and specific molecular marker suitable for phylogenetic analyses of subspecies and strains of trypanosomalid flagellates, as testified by the subdivision of the genus Leishmania into the subgenera Leishmania, Viannia and Sauroleishmania. However, since Phytomonas and monogenetic parasites of insects represent the earliest diverging groups, the CRs do not seem to be useful for inference of relationships among major lineages of the order Kinetoplastida.
The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an endopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Coleoptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Diptera clade is differently interpreted by advocates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (\"orders\") are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of \"key innovations\" promoting evolutionary success (in terms of large species numbers) is fraught with difficulties., Niels P. Kristensen, and Lit
The effects of blocking ventromedial hypothalamic nucleus (VMH) muscarinic cholinoceptors on cardiovascular responses were investigated in running rats. Animals were anesthetized with pentobarbital sodium and fitted with bilateral cannulae into the VMH. After recovering from surgery, the rats were familiarized to running on a treadmill. The animals then had a polyethylene catheter implanted into the left carotid artery to measure blood pressure. Tail skin temperature (Ttail), heart rate, and systolic, diastolic and mean arterial pressure were measured after bilateral injections of 0.2 μl of 5 × 10−9 mol methylatropine or 0.15 M NaCl solution into the hypothalamus. Cholinergic blockade of the VMH reduced time to fatigue by 31% and modified the temporal profile of cardiovascular and Ttail adjustments without altering their maximal responses. Mean arterial pressure peak was achieved earlier in methylatropine-treated rats, which also showed a 2-min delay in induction of tail skin vasodilation, suggesting a higher sympathetic tonus to peripheral vessels. In conclusion, muscarinic cholinoceptors within the VMH are involved in a neuronal pathway that controls exercise-induced cardiovascular adjustments. Furthermore, blocking of cholinergic transmission increases sympathetic outflow during the initial minutes of exercise, and this higher sympathetic activity may be responsible for the decreased performance., S. P. Wanner ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The aim of this paper is to increase the stability of buildings and structures to natural disasters by modifying the Georgian clays into cement concrete filler by creation-using of rehydro-liming pozzolanization technology. The risk of damage-destruction of buildings and structures caused by earthquakes, sea storms, floods, mudflows, has increased in the world. Risks can be prevented by increasing of building and structure stability by reducing the anisotropy of cement concrete strength. To do this: Aqueous aluminosilicate minerals of clays, while dehydrating preserving habitus, are modified into a void containing (...mAl2O3∙nSiO2..) base minerals in which, after mixing in cement concrete while rehydro-liming, Ca(OH)2 is sorbed. The tobermorite, stratlingite, generated in filler, together with cement ettringite form fiber-needle-flaky habit clusters by modifying the structure of cement concrete with 3D self-nano-reinforcement, by reducing the anisotropy of strength - by increasing of stability to loads with variable direction-magnitude. It has been proven that in order to prevent risks of catastrophe, it is possible to use modification of Georgian clays by thermal dehydration in cement concrete technologies, which will create the preconditions for cement concrete pozzolanization by rehydro-liming, so the study of the basics of this process is actual., Rajden Skhvitaridze, Elena Shapakidze, IIoseb Gejadze, Merab Abazadze, Malxaz Turdzeladze, Teimuraz Cheishvili and Akaki Skhvitaridze., and Obsahuje bibliografii
The paper presents the results of our effort to reveal objective parameters for evaluation of the spa treatment for patients with anxiety-depressive disorders. The study was based on our previous experience with neuroactive steroids and neurosteroids, which play a crucial role in the psychological well-being of patients by maintaining balance of the organism. A total number of 94 steroids were determinated in a group of 70 female patients diagnosed with anxiety-depressive disorders. Patients underwent a month spa treatment while maintaining unchanged medication dosing with SSRI (selective serotonin reuptake inhibitors). The other investigated factors contributing to improving the health of treated subjects were amino-acid homocysteine and serotonin. The blood samples were collected at the beginning and the end of the spa treatment. Serotonin in all patients increased by a relative 23 % (results given as relative differences in percent), while homocysteine decreased by 17.1 %. Statistically significant increases were found in 21 steroids, which indicate activation of the adrenal cortex. It can be assumed, that the overall improvement in the mental condition of patients, which was proved by questionnaire from Knobloch and Hausner, the increase in immune suppressive substances and anti-autoimmune responses, will maintain for a longer time after the spa treatment., M. Bicikova, L. Macova, L. Kolatorova, M. Hill, J. Novotny, D. Jandova, L. Starka., and Obsahuje bibliografii
Whole-body vibration (WBV) is a new exercise method, with good acceptance among sedentary subjects. The metabolic response to WBV has not been well documented. Three groups of male subjects, inactive (SED), endurance (END) and strength trained (SPRINT) underwent a session of side-alternating WBV composed of three 3-min exercises (isometric half-squat, dynamic squat, dynamic squat with added load), and repeated at three frequencies (20, 26 and 32 Hz). VO2, heart rate and Borg scale were monitored. Twenty-seven healthy young subjects (10 SED, 8 SPRINT and 9 END) were included. When expressed in % of their maximal value recorded in a treadmill test, both the peak oxygen consumption (VO2) and heart rate (HR) attained during WBV were greatest in the SED, compared to the other two groups (VO2: 59.3 % in SED vs 50.8 % in SPRINT and 48.0 % in END, p<0.01; HR 82.7 % in SED vs 80.4 % in SPRINT and 72.4 % in END, p<0.05). In conclusions, the heart rate and metabolic response to WBV differs according to fitness level and type, exercise type and vibration frequency. In SED, WBV can elicit sufficient cardiovascular response to benefit overall fitness and thus be a potentially useful modality for the reduction of cardiovascular risk., B. Gojanovic, F. Feihl, G. Gremion, B. Waeber., and Obsahuje bibliografii
To understand the contribution of potassium (K+) channels, particularly α-dendrotoxin (D-type)-sensitive K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits), to the generation of neuronal spike output we must have detailed information of the functional role of these channels in the neuronal membrane. Conventional intracellular recording methods in current clamp mode were used to identify the role of α-dendrotoxin (α-DTX)-sensitive K+ channel currents in shaping the spike output and modulation of neuronal properties of cerebellar Purkinje neurons (PCs) in slices. Addition of α-DTX revealed that D-type K+ channels play an important role in the shaping of Purkinje neuronal firing behavior. Repetitive firing capability of PCs was increased following exposure to artificial cerebrospinal fluid (aCSF) containing α-DTX, so that in response to the injection of 0.6 nA depolarizing current pulse of 600 ms, the number of action potentials insignificantly increased from 15 in the presence of 4-AP to 29 action potentials per second after application of DTX following pretreatment with 4-AP. These results indicate that D-type K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits) may contribute to the spike frequency adaptation in PCs. Our findings suggest that the activation of voltage-dependent K+ channels (D and A types) markedly affect the firing pattern of PCs., H. Haghdoust, M. Janahmadi, G. Behzadi., and Obsahuje bibliografii a bibliografické odkazy
Fibroblast growth factor (FGF) signaling plays an important role during embryonic induction and patterning, as well as in modulating proliferative and hypertrophic growth in fetal and adult organs. Hemodynamically induced stretching is a powerful physiological stimulus for embryonic myocyte proliferation. The aim of this study was to assess the effect of FGF2 signaling on growth and vascularization of chick embryonic ventricular wall and its involvement in transmission of mechanical stretchinduced signaling to myocyte growth in vivo . Myocyte proliferation was significantly higher at the 48 h sampling interval in pressure-overloaded hearts. Neither Western blotting, nor immunohistochemistry performed on serial paraffin sections revealed any changes in the amount of myocardial FGF2 at that time point. ELISA showed a significant increase of FGF2 in the serum. Increased amount of FGF2 mRNA in the heart was confirmed by real time PCR. Blocking of FGF signaling by SU5402 led to decreased myocyte proliferation, hemorrhages in the areas of developing vasculature in epicardium and digit tips. FGF2 synthesis is increased in embryonic ventricular cardiomyocytes in response to increased stretch due to pressure overload. Inhibition of FGF signaling impacts also vasculogenesis, pointing to partial functional redundancy in paracrine control of cell proliferation in the developing heart., E. Krejci, Z. Pesevski, O. Nanka, D. Sedmera., and Obsahuje bibliografii
Nitric oxide (NO) is an important endogenous neurotransmitter and mediator. It participates in regulation of physiological processes in different organ systems including airways. Therefore, it is important to clarify its role in the regulation of both airway and vascular smooth muscle, neurotransmission and neurotoxicity, mucus transport, lung development and in the surfactant production. The bioactivity of NO is highly variable and depends on many factors: the presence and activity of NO-producing enzymes, activity of competitive enzymes (e.g. arginase), the amount of substrate for the NO production, the presence of reactive oxygen species and others. All of these can change NO primary physiological role into potentially harmful. The borderline between them is very fragile and in many cases not entirely clear. For this reason, the research focuses on a comprehensive understanding of NO synthesis and its metabolic pathways, genetic polymorphisms of NO synthesizing enzymes and related effects. Research is also motivated by frequent use of exhaled NO monitoring in the clinical manifestations of respiratory diseases. The review focuses on the latest knowledge about the production and function of this mediator and understanding the basic physiological processes in the airways., M. Antosova, D. Mokra, L. Pepucha, J. Plevkova, T. Buday, M. Sterusky, A. Bencova., and Obsahuje bibliografii