This paper reports the processes by which a single-phase 3-D CFD model of hydrodynamics in a 17-km-long dam reservoir was developed, verified and tested. A simplified VOF model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-ω SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (average error of less than 10%) between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics in the lake, especially on the development of the water circulation pattern in the lacustrine zone.
Quaternary faulting in the western part of the Gulf of Corinth has been evidenced by geology and geomorphology, as well as by seismic recording. A series of three main normal fault segments are aligned in a steep southern coastal zone of the gulf. These fault segments, 15 to 25 km long, have an average strike of 90° - 105° and a northward dip of about 50° - 75°. Selected fault points were equipped with 3-D crack gauges TM71 during 2002 to monitor movements along the fault planes here, as well as on another fault cutting through the small island of Trizonia near the opposite northern shore of the gulf. Results of the monitoring present relative displacements induced by active tectonic movement s. Generally, the movements recorded on the faults are characteristic of an aseismic linear creep in vertical, i.e. upliftin g/subsiding in rates of mm per year due to uplifts of the Peloponnesian Peninsula. In 2003 a thr ee months long period of fast acceleration of movements was recorded. During this acceleration phase displacements changed to skew uplifting/subsiding with a left-lateral horizontal component. Moreover, horizontal rotation of monitored blocks corresponding to a sy stematic westwards opening of the Gulf was observed with only single eastward opening episodes., Josef Stemberk and Blahoslav Košťák., and Obsahuje bibliografické odkazy
During routine processing of selected events of an active KTB experiment it has appeared doubts concerning data reliability and consequently the reliability of results based on them. In the paper 3 events are studied in detail, full seismic moment tensors, as well as their errors, are determined (by non-linear inversion of P/SH waves ratios). It is shown that for the processed low constrained data moment tensor (MT) can be determined, however the relative error is of order of first tens of percent; the results also considerably depend on the way of data picking, used medium model, way of Cost function construction, etc. Any subsequent geophysical interpretation therefore should takes into account this uncertainty. MTs are finally decomposed into DC and non-DC parts, MTs errors are also transformed., Petr Kolář., and Obsahuje bibliografii
The present paper concerns long-term 3D monitoring of active fault structures in the Krupnik-Kresna seismic zone, SW Bulgaria with the use of extensometers TM71. The purpose is to establish the real rates of fault movements in the most seismically active area in Bulgaria. Three points were installed (B6 on Krupnik Fault, and K5 and K12 on Struma Fault), which indicate a recent activity. The fault movements are characteristic with “calm” periods, linear slips, accelerations and sudden displacements. Different regimes of dynamics have been established corresponding to different periods. The greatest dynamics is found at monitoring point B6 along Krupnik Fault: for the whole period of observation the trends are calculated as left lateral slip with 1.88 mm/a and a thrusting with 1.59 mm/a with high correlation coefficients. Co-seismic displacements from local and distant earthquakes were recorded. The significant impact was from M=7.4, 17 August, 1999, Izmit Earthquake, Turkey, showing a shortening of 8.34 mm, a right-lateral slip of 5.09 mm and a thrusting of 0.96 mm. After that, for a short period of time the regime of movement on fault was changed. Movements on the Struma system reveal lower rates. Both points show left-lateral movements, 0.28 mm/a at K5 and 0.09 mm/a at K12, and thrusting with 0.11 mm/a at K5 and 0.72 mm/a at K12., Nikolai Dobrev., and Obsahuje bibliografii