The entropy region is a fundamental object of study in mathematics, statistics, and information theory. On the one hand, it involves pure group theory, governing inequalities satisfied by subgroup indices, whereas on the other hand, computing network coding capacities amounts to a convex optimization over this region. In the case of four random variables, the points in the region that satisfy the Ingleton inequality (corresponding to abelian groups and to linear network codes) form a well-understood polyhedron, and so attention has turned to Ingleton-violating points in the region. How far these points extend is measured by their Ingleton score, where points with positive score are Ingleton-violating. The Four-Atom Conjecture stated that the Ingleton score cannot exceed 0.089373, but this was disproved by Matúš and Csirmaz. In this paper we employ two methods to investigate Ingleton-violating points and thereby produce the currently largest known Ingleton scores. First, we obtain many Ingleton-violating examples from non-abelian groups. Factorizability appears in many of those and is used to propose a systematic way to produce more. Second, we rephrase the problem of maximizing Ingleton score as an optimization question and introduce a new Ingleton score function, which is a limit of Ingleton scores with maximum unchanged. We use group theory to exploit symmetry in these new Ingleton score functions and the relations between them. Our approach yields some large Ingleton scores and, using this methodology, we find that there are entropic points with score 0.09250007770, currently the largest known score., Nigel Boston and Ting-Ting Nan., and Obsahuje bibliografické odkazy
Studie uvádí přehled studií zaměřených na využití expoziční terapie virtuální realitou (VRET) v rámci léčby úzkostných poruch. Autoři vymezují základní pojmy z oblasti úzkostných poruch, kyberprostoru, virtuální reality a VRET. Jejich cílem bylo zmapování výzkumných studií, jejich rozbor a interpretace výsledků. Příspěvek se zaměřuje na efekt účinnosti VRET v léčbě strachu z létání, strachu z výšek a sociální fobie. Z analýzy výzkumných studií vyplývá, že VRET má prokazatelný efekt při léčbě anxiózních poruch., The study provides an overview of articles about the use of virtual reality exposure therapy (VRET) in the treatment of anxiety disorders. Authors defined the basic concepts as anxiety disorders, cyberspace, virtual reality and VRET. The aim of article is to map the specific research studies, their analysis and interpretation. Authors focused on the effect size of VRET in the fear of flying, acrophobia and social phobia treatment. They close that VRET has demonstrable effect on effectiveness of anxious disorders treatment., Jan Šmahaj, Roman Procházka., and Obsahuje seznam literatury
Visfatin is a multi-functional molecule that can act intracellularly and extracellularly as an adipokine, cytokine and enzyme. One of the main questions concerning visfatin is the mechanism of its secretion; whether, how and from which cells visfatin is released. The objective of this in vitro study was to observe the active secretion of visfatin from 3T3-L1 preadipocytes and adipocytes, HepG2 hepatocytes, U-937, THP-1 and HL-60 monocytes and macrophages. The amount of visfatin in media and cell lysate was always related to the intracellular enzyme, glyceraldehyde-3- phosphate dehydrogenase (GAPDH), to exclude the passive release of visfatin. Visfatin was not found in media of 3T3-L1 preadipocytes. In media of 3T3-L1 adipocytes and HepG2 hepatocytes, the ratio of visfatin to the amount of GAPDH was identical to cell lysates. Hence, it is likely that these cells do not actively secrete visfatin in a significant manner. However, we found that significant producers of visfatin are differentiated macrophages and that the amount of secreted visfatin depends on used cell line and it is affected by the mode of differentiation. Results show that 3T3-L1 adipocytes and HepG2 hepatocytes released visfatin only passively during the cell death. U-937 macrophages secrete visfatin in the greatest level from all of the tested cell lines., P. Svoboda, E. Křížová, K. Čeňková, K. Vápenková, J. Zídková, V. Zídek, V. Škop., and Obsahuje bibliografii