We investigated how selected electromorphological parameters of myelinated axons influence the preservation of interspike intervals when the propagation of action potentials is corrupted by axonal intrinsic noise. Hereby we tried to determine how the intrinsic axonal noise influences the performance of axons serving as carriers for temporal coding. The strategy of this coding supposes that interspike intervals presented to higher order neurons would minimally be deprived of information included in interspike intervals at the axonal initial segment. Our experiments were conducted using a computer model of the myelinated axon constructed in a software environment GENESIS (GEneral NEural SImulation System). We varied the axonal diameter, myelin sheath thickness, axonal length, stimulation current and channel distribution to determine how these parameters influence the role of noise in spike propagation and hence in preserving the interspike intervals. Our results, expressed as the standard deviation of spike travel times, showed that by stimulating the axons with regular rectangular pulses the interspike intervals were preserved with a microsecond accuracy. Stimulating the axons with pulses imitating postsynaptic currents, greater changes of interspike intervals were found, but the influence of implemented noise on the jitter of interspike intervals was approximately the same., E. Kuriščák, S. Trojan, Z. Wünsch., and Obsahuje bibliografii
The pattern-reversal (P-VEPs) and the motion-onset (M-VEPs) of visual evoked potentials were modeled by means of three damped oscillators (O1, O2, O3) of identical construction. The O1, assumed to simulate the response of primary visual area (V1), was driven by the firing density of the lateral geniculate nuclei. O1 contributed mainly to the N75 and P100 peaks of the P-VEPs. The O2, driven by the O1 output, mimics the activity of V2, V3a, and MT. It contributed to the negative peak N145 of the P-VEPs or to the N160 in the M-VEPs. The O3 was suggested to model late slow processes probably of an attentive origin. The model parameters were set by optimization to follow the P-VEPs and M-VEPs obtained as a grand average of four young volunteers (PZ - A2 lead). The evoked potentials were described with normalized root mean square error lower than 13 %., J. Kremláček, M. Kuba, J. Holčík., and Obsahuje bibliografii
The aim of this study was to analyze the possibilities of various types of stent modeling and to develop some new models. A brief survey of basic properties of stents and a list of basic designs of stents is presented. Two approaches to stent modeling were identified. Structural mechanics is the theoretical background of our analytical model of a spiral stent. The finite element method was also used. The measurement equipment for model evaluation was developed., J. Záhora, A. Bezrouk, J. Hanuš., and Obsahuje bibliografii
The review aims to summarize current knowledge on the effects of moderate alcohol consumption ( 1 standard drink a day for women; 2 drinks a day for men) on triglyceride concentration in circulation. Current evidence suggests that the relationship between alcohol consumption and triglyceridemia is J -shaped. Triglyceridemia is lowest in subjects who drink 10 -20 g/alcohol a day. Such a J -shaped association is comparable with that described for the relationship between alcohol and cardiovascular risk. On the contrary, alcohol taken with a meal increases and prolongs postprandi al triglyceridemia. Such effects of alcohol consumption may be at least partially explained by the effects of ethanol on lipoprotein lipase (LPL) activity. Long -term moderate alcohol consumption increases LPL activity, which may explain its TG -lowering effect. On the other hand, LPL activity is acutely downregulated by ethanol, which explains increased postprandial triglyceridemia., J. Kovář, K. Zemánková., and Obsahuje bibliografii
Numerous countermeasures have been proposed to minimize microgravity-induced physical deconditioning, but their benefits are limited. The present study aimed to investigate whether personalized aerobic exercise based on artificial gravity (AG) mitigates multisystem physical deconditioning. Fourteen men were assigned to the control group (n=6) and the countermeasure group (CM, n=8). Subjects in the CM group were exposed to AG (2 Gz at foot level) for 30 min twice daily, during which time cycling exercise of 80-95 % anaerobic threshold (AT) intensity was undertaken. Orthostatic tolerance (OT), exercise tests, and blood assays were determined before and after 4 days head-down bed rest (HDBR). Cardiac systolic function was measured every day. After HDBR, OT decreased to 50.9 % and 77.5 % of pre-HDBR values in control and CM groups, respectively. Exercise endurance, maximal oxygen consumption, and AT decreased to 96.5 %, 91.5 % and 91.8 % of pre-HDBR values, respectively, in the control group. Nevertheless, there were slight changes in the CM group. HDBR increased heart rate, sympathetic activity, and the pre-ejection period, but decreased plasma volume, parasympathetic activity and left-ventricular ejection time in the control group, whereas these effects were eliminated in the CM group. Aldosterone had no change in the control group but increased significantly in the CM group. Our study shows that 80-95 % AT aerobic exercise based on 2 Gz of AG preserves OT and exercise endurance, and affects body fluid regulation during short-term HDBR. The underlying mechanisms might involve maintained cardiac systolic function, preserved plasma volume, and improved sympathetic responses to orthostatic stress., X.-T. Li, C.-B. Yang, Y.-S. Zhu, J. Sun, F. Shi, Y.-C. Wang, Y. Gao, J.-D. Zhao, X.-Q. Sun., and Obsahuje bibliografii
Previous data suggest that type 1 diabetes mellitus leads to the deterioration of myocardial intercellular communication mediated by connexin-43 (Cx43) channels. We therefore aimed to explore Cx43, PKC signaling and ultrastructure in non -treated and omega-3 fatty acid (omega-3) treated spontaneously diabetic Goto-Kakizaki (GK) rats considered as type 2 diabetes model. Four-week-old GK and non-diabetic Wistar-Clea rats were fed omega -3 (200 mg/kg/day) for 2 months and compared with untreated rats. Realtime PCR and immunoblotting were performed to determine Cx43, PKC- epsilon and PKC-delta expression. In situ Cx43 was examined by immunohistochemistry and subcellular alterations by electr on microscopy. Omega-3 intake reduced blood glucose, triglycerides, and cholesterol in diabetic rats and this was associated with improved integrity of cardiomyocytes and capillaries in the heart. Myocardial Cx43 mRNA and protein levels were higher in diab etic versus non- diabetic rats and were further enhanced by omega-3. The ratio of phosphorylated (functional) to non-phosphorylated Cx43 was lower in diabetic compared to non- diabetic rats but was increased by omega-3, in part due to up -regulation of PKC-epsilon. In addition, proapoptotic PKC-delta expression was decreased. In conclusion, spontaneously diabetic rats at an early stage of disease benefit from omega-3 intake due to its hypoglycemic effect, upregulation of myocardial Cx43, and preservation of cardiovascular ultrastructure. These findings indicates that supplementation of omega-3 may be beneficial also in the management of diabetes in humans., J. Radosinska, L. H. Kurahara, K. Hiraishi, C. Viczenczova, T. Egan Benova, B. Szeiffova Bacova, V: Dosenko, J. Navarova, B. Obsitnik, I. Imanaga, T. Soukup, N. Tribulova., and Obsahuje bibliografii
Acute promyelocytic leukemia is characterized by a block of myeloid differentiation. The incubation of cells with 1 μmol/l all-trans retinoic acid (ATRA) for 72 h induced differentiation of HL-60 cells and increased the number of CD11b positive cells. Morphological and functional changes were accompanied by a loss of proliferative capacity. Differentiation caused by preincubation of leukemic cells HL-60 with ATRA is accompanied by loss of clonogenicity (control cells: 870 colonies/103 cells, cells preincubated with ATRA: 150 colonies/103 cells). D0 for undifferentiated cells was 2.35 Gy, for ATRA differentiated cells 2.46 Gy. Statistical comparison of clonogenity curves indicated that in the whole range 0.5-10 Gy the curves are not significantly different, however, in the range 0.5-3 Gy ATRA differentiated cells were significantly more radioresistant than non-differentiated cells. When HL-60 cells preincubated with 1 μmol/l ATRA were irradiated by a sublethal dose of 6 Gy, more marked increase of apoptotic cells number was observed 24 h after irradiation and the surviving cells were mainly in the G1 phase of the cell cycle, while only irradiated cells were accumulated in G2 phase. Our results imply that preincubation of cells with ATRA accelerates apoptosis occurrence (24 h) after irradiation by high sublethal dose of 6 Gy. Forty-eight hours after 6 Gy irradiation, late apoptotic cells were found in the group of ATRA pretreated cells, as determined by APO2.7 positivity. This test showed an increased effect (considering cell death induction) in comparison to ATRA or irradiation itself., M. Mareková, J. Vávrová, D. Vokurková, J. Psutka., and Obsahuje bibliografii
We aimed to explore the effects of melatonin and n-3 polyunsaturated fatty acids (PUFA) supplementation on plasma and aortic nitric oxide (NO) levels in isoproterenol (Iso) affected spontaneously hypertensive (SHR) and Wistar rats. Untreated control rats were compared with Iso injected (118 mg/kg, s.c.) rats, and Iso injected plus supplemented with melatonin (10 mg/kg, p.o.) or PUFA (1.68 g/kg, p.o.) for two months. Plasma and aortic basal, L-NAME inhibited, adrenaline and acetylcholine stimulated NO were determined using Griess method. Plasma NO levels were lower in SHR versus Wistar rats. Iso decreased NO in Wistar while not in SHR. PUFA but not melatonin intake of Iso treated SHR increased plasma NO along with a decrease in systolic blood pressure. Basal aortic NO level was higher in SHR than Wistar rats and not altered by Iso. Intake of melatonin increased but PUFA decreased basal NO levels in Wistar+Iso and did not affect in SHR+Iso rats. Acetylcholine and adrenaline induced aortic NO release was significantly increased in Wistar+Iso but not SHR+Iso group. Melatonin intake increased Ach induced aortic NO in Wistar+Iso and SHR+Iso groups, whereas there was no effect of PUFA intake. Findings suggest that PUFA modulates plasma and melatonin aortic NO levels of isoproterenol affected rats in a strain-dependent manner., K. K. Chaudagar, C. Viczenczova, B. Szeiffova Bacova, T. Egan Benova, M. Barancik, N. Tribulova., and Obsahuje bibliografii
Hypericin is a photosensitizing plant pigment from Hypericum perforatum with multiple modes of light-induced biological activities due to production of singlet oxygen and/or excited-state proton transfer with consequent pH drop in the hypericin environment. In the present work, we studied the effects of three inhibitors of crucial mechanisms responsible for intracellular pH (pHi) regulation on hypericin phototoxicity: N-ethylmaleimide (NEM), an inhibitor of H+-ATPase, 5'-(N,N-dimethyl)-amiloride (DMA), an inhibitor of Na+/H+ exchanger, and omeprazole (OME), an inhibitor of H+K+-ATPase. Our experiments show that the effect of hypericin at 1x10-5 and 1x10-6 mol.l-1 was significantly potentiated by NEM (1x10-7-1x10-9 mol.l-1) and DMA (1x10-6 and 1x10-7 mol.l-1) in leukemic CEM cell line. On the other hand, OME had no significant effect on hypericin cytotoxicity. Our results support the hypothesis that the excited-state proton transfer and the consequent acidification of hypericin environment could play a role in the biological activity of hypericin., A. Miroššay, L. Mirossay, M. Šarišský, P. Papp, J. Mojžiš., and Obsahuje bibliografii
Transient receptor potential A1 (TRPA1) is an excitatory ion channel that functions as a cellular sensor, detecting a wide range of proalgesic agents such as environmental irritants an d endogenous products of inflammation and oxidative stress. Topical application of TRPA1 agonists produces an acute nociceptive response through peripheral release of neuropeptides, purines and other transmitters from activated sensory nerve endings. This, in turn, further regulates TRPA1 activity downstream of G-protein and phospholipase C -coupled signaling cascades. Despite the important physiological relevance of such regulation leading to nociceptor sensitization and consequent pain hypersensitivity, th e specific domains through which TRPA1 undergoes post -translational modifications that affect its activation properties are yet to be determined at a molecular level. This review aims at providing an account of our current knowledge on molecular basis of r egulation by neuronal inflammatory signaling pathways that converge on the TRPA1 channel protein and through modification of its specific residues influence the extent to which this channel may contribute to pain., A. Kádková, V. Synytsya, J. Krusek, L. Zímová, V. Vlachová., and Obsahuje bibliografii