Growth, photosynthetic gas exchange, and chlorophyll fluorescence characteristics were investigated in wild type (WT) and Cd-sensitive mutant rice (Oryza sativa L.) plants using 50 µM Cd treatment for 12 d followed by a 3-d recovery. Under Cd stress, net dry mass and pigment contents were significantly lower in the mutant plants than in the WT. The mutant had lower net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) than WT rice, however, it had higher intercellular CO2 concentration (C i), indicating that non-stomatal factors accounted for the inhibition of P N. Maximal photochemical efficiency of photosystem 2 (Fv/Fm), effective quantum yield of PS2 (ΦPS2), and photochemical quenching (qP) decreased much in the mutant under Cd stress. Cd content in roots and leaves of the mutant was significantly higher than those in the WT. Hence Cd toxicity was associated with the marked increases in Cd contents of plant tissue. After the recovery for 3 d, the WT rice had higher capacity to recover from Cd injury than the mutant. and J.-Y. He ... [et al.].
Gas exchange and chlorophyll (Chl) fluorescence were measured on young mature leaves of rose plants (Rosa hybrida cvs. First Red and Twingo) grown in two near-to-tight greenhouses, one under control ambient CO2 concentration, AC (355 µmol mol-1) and one under CO2 enrichment, EC (700 µmol mol-1), during four flushes from late June to early November. Supply of water and mineral elements was non-limiting while temperature was allowed to rise freely during daytime. Leaf diffusive conductance was not significantly reduced at EC but net photosynthetic rate increased by more than 100 %. Although the concentration of total non-structural saccharides was substantially higher in the leaves from the greenhouse with EC, ΦPS2 (quantum efficiency of radiation use) around noon was not significantly reduced at EC indicating that there was no down-regulation of electron transport. Moreover, CO2 enrichment did not cause any increase in the risk of photo-damage, as estimated by the 1 - qP parameter. Non-photochemical quenching was even higher in the greenhouse with EC during the two summer flushes, when temperature and photosynthetic photon flux density (PPFD) were the highest. Hence rose photosynthesis benefits strongly from high concentrations of atmospheric CO2 at both high and moderate temperatures and PPFD. and L. Urban ... [et al.].
The effect on traits of photosynthesis and water relations of assimilate demand was studied in olive tree that has strong alternate bearing. The diurnal and seasonal leaf gas exchanges, area dry mass, and saccharide and chlorophyll (Chl) contents were measured by comparing shoots with fruit of "on-trees" (heavy fruit load) with shoots without fruit on both "on-trees" and "off-trees" (light fruit load). In spite of large seasonal and diurnal differences, leaf net photosynthetic rate (PN), stomatal conductance (gs), sub-stomatal CO2 concentration (C1), transpiration rate (E), and respiration rate (RD) were not significantly influenced by fruit load or by the presence or absence of fruit on the shoot. An only exception was at the beginning of July when the one-year-old leaves on shoots with fruit had slightly higher PN and E than leaves on shoots without fruit. Water content, Chl and saccharide contents, and area dry mass of the leaf were not substantially influenced by the presence/absence of fruit on the shoot or fruit load. Hence the sink demand, associated with fruit growth, did not improve leaf photosynthetic efficiency in olive.
Agronomic traits, photosynthetic pigments, gas exchange, and chlorophyll (Chl) fluorescence parameters of red stem buckwheat (Fagopyrum dibotrys Hara) mutants induced by γ-radiation were compared with green control at seedling stage. Plant height, number of first-class branches, and rhizome biomass were inhibited significantly (p<0.01). Chl a, Chl b, and Chl a+b contents decreased with elevated dose of γ-rays, while increasing carotenoid content indicated that buckwheat was capable of adjusting to the radiation damage. Decrease in net photosynthetic rate was the result of both stomatal and non-stomatal limitations. Fluorescence parameters, such as F0, Fm, Fv/Fm, Fv/F0, ΦPS2, electron transport rate, and photochemical quenching declined significantly (p<0.01) as compared with control due to photoinhibition, while non-photochemical quenching increased to enhance thermal dissipation. Lower parameters implied that leaf tissue was damaged significantly by high dose of γ-radiation and therefore leaf senescence was accelerated. and C. F. Jia, A. L. Li.
The effect of iron deficiency on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase (RuBPC), and photosystem activities were investigated in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. The contents of chlorophyll (Chl) (a+b) and carotenoids per unit fresh mass showed a progressive decrease upon increase in iron deficiency. Similar results were also observed in content of total soluble proteins and RuBPC activity. The marked loss of large (55 kDa) and small (15 kDa) subunits of RuBPC was also observed in severely chlorotic leaves. However, when various photosynthetic electron transport activities were analysed in isolated thylakoids, a major decrease in the rate of whole chain (H2O → methyl viologen) electron transport was observed in iron deficient leaves. Such reduction was mainly due to the loss of photosystem 2 (PS2) activity. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements in leaves. Smaller inhibition of photosystem 1 (PS1) activity was also observed in both mild and severely chlorotic leaves. The artificial electron donors, diphenyl carbazide and NH2OH, markedly restored the loss of PS2 activity in severely chlorotic leaves. The marked loss of PS2 activity was evidently due to the loss of 33, 23, 28-25, and 17 kDa polypeptides in iron deficient leaves. and M. Bertamini, N. Nedunchezhian, B. Borghi.
Mulberry genotypes were subjected to salinity (0-12 mS cm-1) in pot culture experiment. Chlorophyll and total carotenoid contents were reduced considerably by salinity. At low salinity, photosynthetic CO2 uptake increased over the control, but it decreased at higher salinity. Contents of soluble proteins, free amino acids, soluble sugars, sucrose, starch, and phenols increased at salinity of 1-2 mS cm-1 and decreased at higher salinity (8-12 mS cm-1). Glycine betaine accumulated more than proline, the maximum accumulation of both was at salinity of 2-4 mS cm-1. Among the genotypes studied, BC2-59 followed by S-30 showed better salinity tolerance than M-5. and P. Agastian, S. J. Kingsley, M. Vivekanandan.
An experiment was conducted to study the effect of NaCl (electric conductivity of 0, 4, 8, 12, and 16 dS m-1) on growth, gas exchange parameters, water status, membrane injury, chlorophyll stability index and oxidative defense mechanisms in two cultivars (Gola and Umran) of Indian jujube (Ziziphus mauritiana). Results showed that the dry mass and leaf area reduced linearly with increasing levels of salinity. Net photosynthetic rate (PN), transpiration (E), and stomatal conductance (gs) were comparatively lower in Umran which further declined with salinity. Leaf relative water content, chlorophyll (Chl) stability and membrane stability also decreased significantly under salt stress, with higher magnitude in Umran. Superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) activities were higher in Gola whereas hydrogen peroxide (H2O2) accumulation and lipid peroxidation (MDA content) were higher in control as well as salttreated plants of Umran. The Na+ content was higher in the roots of Gola and in the leaves of Umran, resulting in high K+/Na+ ratio in Gola leaves. Thus it is suggested that salt tolerance mechanism is more efficiently operative in cultivar Gola owing to better management of growth, physiological attributes, antioxidative defense mechanism, and restricted translocation of Na+ from root to leaves along with larger accumulation of K+ in its leaves., R. Agrawal ... [et al.]., and Obsahuje bibliografii
Fluorescence spectroscopy at 77 K showed that the application of glucose lead to the depletion of phycobilisomes (PBS) and photosystems (PS) 2 and 1, and that PS2 was more sensitive to glucose than PS1. The application of sodium thiosulfate, an effective scavenger of reactive oxygen intermediates, counteracted the effects of glucose. Sodium thiosulfate effectively protected photosynthetic apparatus, PS2, PS1, and PBS against glucose-induced depletion. Sodium thiosulfate showed strong capability to inhibit the disappearance of chlorophyll induced by glucose. At a relatively low concentration of glucose, the application of sodium thiosulfate can even be helpful for the assembly of photosynthetic apparatus. Hence the reactive oxygen species might be involved in the depletion of the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6803 cells grown in the presence of glucose. and Zeneng Wang ... [et al.].
Impact of UV-A and UV-B radiation on pattern of pigments of the Antarctic macroalga Leptosomia simplex L. was studied during the Polarstern cruise (ANT XII/2) 1994/95 under controlled laboratory conditions. An 8 h exposure to UV-A of 17.6 W m-2 led usually to an increase of carotenoid contents, but to a decrease in contents of chlorophyllide (Chlide) a and chlorophyll (Chl) a. UV-B irradiation (300-320 nm) caused a decrease in contents of Chlide a, lutein, and zeaxanthin, but an increase in contents of Chl a and carotenes. Enhancement of carotenoid contents was attributed to a protection of the photosynthetic apparatus. UV effects on the 15N-ammonium uptake were correlated with the changes in pigment contents.
The grapevine (Vitis vinifera L. cv. Riesling) plants subjected to water deficit were studied for changes in relative water content (RWC), leaf dry mass, contents of chlorophyll (Chl), total leaf proteins, free amino acids, and proline, and activities of ribulose-1,5-bisphosphate carboxylase (RuBPC), nitrate reductase (NR), and protease. In water-stressed plants RWC, leaf dry matter, Chl content, net photosynthetic rate (PN), and RuBPC and NR activities were significantly decreased. The total leaf protein content also declined with increase in the accumulation of free amino acids. Concurrently, the protease activity in the tissues was also increased. A significant two-fold increase in proline content was recorded. and M. Bertaminni ... [et al.].