In this paper significant challenges are raised with respect to the view that explanation essentially involves unification. These objections are raised specifically with respect to the well-known versions of unificationism developed and defended by Michael Friedman and Philip Kitcher. The objections involve the explanatory regress argument and the concepts of reduction and scientific understanding. Essentially, the contention made here is that these versions of unificationism wrongly assume that reduction secures understanding.
Terminology for microtriches, the surface features both unique to and ubiquitous among cestodes, is standardised based on discussions that occurred at the International Workshops on Cestode Systematics in Storrs, Connecticut, USA in 2002, in České Budějovice, Czech Republic in 2005 and in Smolenice, Slovakia in 2008. The following terms were endorsed for the components of individual microtriches: The distal, electron-dense portion is the cap, the proximal more electron-lucent region is the base. These two elements are separated from one another by the baseplate. The base is composed of, among other elements, microfilaments. The cap is composed of cap tubules. The electron-lucent central portion of the base is referred to as the core. The core may be surrounded by an electron-dense tunic. The entire microthrix is bounded by a plasma membrane, the external layer of which is referred to as the glycocalyx. Two distinct sizes of microtriches are recognised: those <= 200 nm in basal width, termed filitriches, and those >200 nm in basal width, termed spinitriches. Filitriches are considered to occur in three lengths: papilliform (<= 2 times as long as wide), acicular (2-6 times as long as wide), and capilliform (>6 times as long as wide). In instances in which filitriches appear to be doubled at their base, the modifier duplicated is used. Spinitriches are much more variable in form. At present a total of 25 spinithrix shapes are recognised. These consist of 13 in which the width greatly exceeds the thickness (i.e., bifid, bifurcate, cordate, gladiate, hamulate, lanceolate, lineate, lingulate, palmate, pectinate, spathulate, trifid, and trifurcate), and 12 in which width and thickness are approximately equal (i.e., chelate, clavate, columnar, coniform, costate, cyrillionate, hastate, rostrate, scolopate, stellate, trullate, and uncinate). Spiniform microtriches can bear marginal (serrate) and/or dorsoventral (gongylate) elaborations; they can also bear apical features (aristate). The latter two modifiers should be used only if the features are present. The terminology to describe the overall form of a spinithrix should be used in the following order: tip, margins, shape. Each type of microthrix variation is defined and illustrated with one or more scanning electron micrographs. An indication of the taxa in which each of the microthrix forms is found is also provided.
This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see \cite{Coirier1} and \cite{Coirier2}). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient in normal direction. Moreover, the proofs of L2(Ω) - a priori estimates for our discrete solution are given. Finally we present our computational results.
This paper is devoted to studying the effects of a vanishing structural damping on the controllability properties of the one dimensional linear beam equation. The vanishing term depends on a small parameter $\varepsilon \in (0,1)$. We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls $v_{\varepsilon }$ as $\varepsilon $ goes to zero. It is shown that for any time $T$ sufficiently large but independent of $\varepsilon $ and for each initial data in a suitable space there exists a uniformly bounded family of controls $(v_\varepsilon )_\varepsilon $ in $L^2(0, T)$ acting on the extremity $x = \pi $. Any weak limit of this family is a control for the beam equation. This analysis is based on Fourier expansion and explicit construction and evaluation of biorthogonal sequences. This method allows us to measure the magnitude of the control needed for each eigenfrequency and to show their uniform boundedness when the structural damping tends to zero.
It is a classical problem in Fourier analysis to give conditions for a single sine or cosine series to be uniformly convergent. Several authors gave conditions for this problem supposing that the coefficients are monotone, non-negative or more recently, general monotone. There are also results for the regular convergence of double sine series to be uniform in case the coefficients are monotone or general monotone double sequences. In this paper we give new sufficient conditions for the uniformity of the regular convergence of sine-cosine and double cosine series, which are necessary as well in case the coefficients are non-negative. The new results also bring necessary and sufficient conditions for the uniform regular convergence of double trigonometric series in complex form.
Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( {0;\rho _{0}}\right):={\left\rbrace {w\:{\left| {w}\right| }<\rho _{0}} \right\lbrace }$ normalized by $\varphi (0)=0$ and ${\varphi }^{\prime }(0)=1$. Let us set $\varphi _{p}(z):=\int _{0}^{z}{{\left[ {{\varphi } ^{\prime }(\zeta )}\right] }^{{2}/{p}}}\mathrm{d}\zeta $, and let $\pi _{n,p}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _{G}{{\left| {{\varphi }_{p}^{\prime }(z)-{P}_{n}^{\prime }(z)}\right| }}^{p}\mathrm{d}\sigma _{z}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_{n}(0)=0$, ${P}_{n}^{\prime }(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _{n,p}(z)$ to $\varphi _{p}(z)$ on $\overline{G}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.
We prove the existence and uniform decay rates of global solutions for a hyperbolic system with a discontinuous and nonlinear multi-valued term and a nonlinear memory source term on the boundary.
We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb{R}^d$ with $d\le 3$.
An algebra A is uniform if for each ∅ ∈ Con A, every two classes of ∅ have the same cardinality. It was shown by W. Taylor that coherent varieties need not be uniform (and vice versa). We show that every coherent variety having transferable congruences is uniform.
The notion of a metric bead space was introduced in the preceding paper (L. Pasicki: Bead spaces and fixed point theorems, Topology Appl., vol. 156 (2009), 1811–1816) and it was proved there that every bounded set in such a space (provided the space is complete) has a unique central point. The bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces. It appears that normed bead spaces are identical with uniformly convex spaces. On the other hand the "metric" approach leads to new elementary conditions equivalent to the uniform convexity. The initial part of the paper contains the proof that discus spaces (they seem to have a richer structure) are identical with bead spaces.