In an algebraic frame $L$ the dimension, $\dim (L)$, is defined, as in classical ideal theory, to be the maximum of the lengths $n$ of chains of primes $p_0<p_1<\cdots <p_n$, if such a maximum exists, and $\infty $ otherwise. A notion of “dominance” is then defined among the compact elements of $L$, which affords one a primefree way to compute dimension. Various subordinate dimensions are considered on a number of frame quotients of $L$, including the frames $dL$ and $zL$ of $d$-elements and $z$-elements, respectively. The more concrete illustrations regarding the frame convex $\ell $-subgroups of a lattice-ordered group and its various natural frame quotients occupy the second half of this exposition. For example, it is shown that if $A$ is a commutative semiprime $f$-ring with finite $\ell $-dimension then $A$ must be hyperarchimedean. The $d$-dimension of an $\ell $-group is invariant under formation of direct products, whereas $\ell $-dimension is not. $r$-dimension of a commutative semiprime $f$-ring is either 0 or infinite, but this fails if nilpotent elements are present. $sp$-dimension coincides with classical Krull dimension in commutative semiprime $f$-rings with bounded inversion.
In eukaryotic oxygenic photosynthetic organisms (both plants and algae), the maximum fluorescence is at peak P, with peak M lying much lower, or being even absent. Thus, the PSMT phase, where S is semisteady state, and T is terminal state, is replaced by a monotonous P→T fluorescence decay. In the present study, we found that dimethoate-treated wheat plant leaves showed SM transient, whereas in the case of control plants monotonous P→T fluorescence decay occured. We suggest that this was partly due to quenching of fluorescence due to [H+], responsible for P to S (T) decay in control plants (Briantais et al. 1979) being replaced by state transition (state 2 to state 1) in dimethoate-treated plants (Kaňa et al. 2012)., J. K. Pandey, R. Gopal., and Obsahuje bibliografii
In our study, the circadian blood pressure (BP) rhythm was studied in subjects with asymptomatic and normotensive pheochromocytoma. We have therefore performed 24-hour BP monitoring not only in 6 subjects with asymptomatic pheochromocytoma, but also in 33 patients with symptomatic pheochromocytoma and in 10 normotensive subjects, who served as a control group. Circadian BP rhythm was expressed by assessing a relative night-time BP decline. We found a similar BP rhythm, catecholamine excretion and tumor size in subjects with both forms of pheochromocytoma. Subjects with asymptomatic pheochromocytoma had a significantly lower night-time systolic BP decline (P=0.01) and diastolic BP decline (P=0.006) than normotensive controls. We conclude that the attenuated night-time BP decline in normotensive and asymptomatic subjects with pheochromocytoma might be a possible sign of partial desensitization of the cardiovascular system to catecholamines., T. Zelinka, J. Widimský, J. Weisserová., and Obsahuje bibliografii
The photosynthetic responses to elevated CO2 concentration (EC) at ambient and ambient +4°C temperature were aßsessed in the second leaf of rice (Oryza sativa L.) seedlings. The duration of different leaf developmental phases, as characterised by changes in photosynthetic pigment contents and photochemical potential, was protracted in the seedlings grown under EC. On the other hand, a temporal shift in the phases of development with an early onset of senescence was observed in the seedlings grown under EC at ambient +4°C temperature. The contents of carotenoids, ß-carotene, and xanthophyll cycle pigments revealed that EC downregulated the protective mechanism of photosynthetic apparatus against oxidative damages, whereas this mechanism assumed higher significance under EC at ambient +4°C temperature. We observed an enhancement in electron transport activity, photochemical potential, and net photosynthesis in spite of a loss in photostasis of photosynthesis under EC. On the other hand, the loss in photostasis of photosynthesis was exacerbated under EC at ambient +4°C temperature due to the decline in electron transport activity, photochemical potential, and net photosynthesis., S. Panigrahi, M. K. Pradhan, D. K. Panda, S. K. Panda, P. N. Joshi., and Seznam literatury
We study the Diophantine equations (k!)n − k n = (n!)k − n k and (k!)n + k n = (n!)k + n k , where k and n are positive integers. We show that the first one holds if and only if k = n or (k, n) = (1, 2), (2, 1) and that the second one holds if and only if k = n.