Obecná teorie relativity (OTR) je tradičně vnímána jako příliš abstraktní a matematicky složitá na to, aby mohla být vyučována na střední škole. Jedná se ale o velmi zajímavou partii fyziky, se kterou se zvídavý středoškolák setká i mimo školu. Její fascinující a dosud úspěšné astrofyzikální předpovědi, jako jsou černé díry nebo gravitační vlny, z ní činí velmi atraktivní téma pro výuku. Ve čtyřdílném článku si postupně ukážeme, jak je možné v řeči středoškolské matematiky a fyziky a zejména pomocí praktických aktivit a pomůcek představit základní myšlenky OTR, konkrétně proč nám fyzikové "tvrdí", že "gravitace je zakřivení prostoročasu". Jednotlivé články Neeukleidovská geometrie, Geometrický pohled na gravitaci, Dilatace času a GPS a Gravitace jako zakřivení prostoročasu korespondují s postupnými myšlenkovými kroky, které nás mají dovést nejen k lepšímu pochopení OTR, ale v ideálním případě i prohloubit náš zájem o tuto krásnou teorii či fyziku vůbec., General Relativity (GR) is traditionally viewed as being too abstract and mathematically complex to be taught at upper secondary school. It is for students, however, a very interesting and, thanks to its astrophysical predictions, quite appealing part of physics. In the up-coning four-part series we will describe a possible way to introduce the basics of GR using only the language of upper secondary mathematics and physics; in particular, why physicists “tell us” that “gravitation is curvature of spacetime”. Individual articles: non-Euclidean geometry, geometrical view of gravitation, time dilation and GPS, and gravitation as curvature of spacetime correspond to a series of thoughts, which will hopefully lead to a better understanding of GR and ideally, also deepen interest in this beautiful theory as well as physics itself., and Matěj Ryston.
V dnešním díle se zaměříme na hůře představitelnou, ale neopomenutelnou část obecné relativity, kterou je čas. Zejména pak na účinky gravitace na jeho plynutí a způsoby, jakými můžeme studentům tento jev přiblížit. Abychom se vyhnuli složité teorii, bude těžiště našeho výkladu spočívat v popisu reálných experimentů. Nesmí samozřejmě chybět ani zmínka o satelitních systémech globální navigace, které jsou esem v rukávu každého, kdo čelí otázkám typu "k čemu nám je ta relativita vlastně dobrá?"., In this part we will focus on the difficult to imagine, but essential part of relativity, i.e. time, and especially how gravity affects its flow and possible approaches for explaining these phenomena to students. In order to avoid complicated theory, the core of our explanation will be a description of real experiments. Finally, we must not forget to mention satellite systems for global navigation, which are an “ace up one’s sleeve” when facing questions like “What is relativity really good for?”., Matěj Ryston., and Obsahuje bibliografické odkazy
Stačí jediný dobře prokázaný nesoulad mezi výsledkem experimentu a předpovědí plynoucí z fyzikální teorie. Poté je nutno celou teorii poctivě a důkladně přezkoumat, a nepodaří-li se nesoulad odstranit, vytvořit teorii novou. Na novou teorii jsou, samozřejmě, kladeny stejně přísné požadavky jako na teorii předchozí [1], [2]. My si v dalším budeme všímat toho, nakolik teoretické závěry obecné teorie relativity (Einsteinovy teorie gravitace, OTR) obstály při observační prověrce. Z celé řady experimentů vybíráme ty nejdůležitější., Jan Horský, Zdeněk Kopecký., and Obsahuje seznam literatury
V roce 1918 zaznamenal detektor Kamiokande v toku atmosférických neutrin neočekávaný deficit mionových neutrin. V té době se za možné vysvětlení považovaly neutrinové oscilace. Posléze, v roce 1998, při studiu atmosférických neutrin detektorem Super-Kamiokande byly neutrinové oscilace objeveny, což vedlo k závěru, že neutrina mají hmotnost. Cítím, že jsem měl mimořádné štěstí, protože jsem se tohoto vzrušujícího objevu od samého počátku účastnil. Objev nenulových hmotností neutrin otevřel okno ke studiu fyziky nad rámec standardního modelu fyziky elementárních částic, zejména fyziky na škále velmi vysokých energií, jakou je velké sjednocení interakcí elementárních částic. Současně však zbývá mnoho věcí, které je třeba pozorovat na samotných neutrinech. Další studium neutrin by nám mohlo poskytnout informace, které mají fundamentální význam pro naše porozumění přírodě, jako např. původ hmoty ve vesmíru., An unexpected muon neutrino deficit was observed in the atmospheric neutrino flux by Kamiokande in 1988. At that time neutrino oscillation was considered as a possible explanation for the data. Subsequently, in 1998, through the studies of atmospheric neutrinos, Super-Kamiokande discovered neutrino oscillations, establishing that neutrinos have mass. I feel that I have been extremely lucky, because I have been involved in the excitement of this discovery from its very beginning. The discovery of nonzero neutrino masses has opened a window to study physics beyond the Standard Model of elementary particle physics, notably physics at a very high energy scale such as the grand unification of elementary particle interactions. At the same time, there are still many things to be observed in neutrinos themselves. Further studies of neutrinos might give us information of fundamental importance for our understanding of nature, such as the origin of the matter in the Universe., Takaaki Kajita ; přeložil Ivan Gregora., and Obsahuje bibliografii
V článku je stručně popsán objev kosmického záření, jeho vlastnosti a metody hledání jeho zdrojů sledováním vysokoenergetických kvant γ. Jsou popsány modely "kosmických urychlovačů" a metodika použití pozemských Čerenkovových stereoskopických teleskopů pro detekci těchto kvant. Je popsán experiment HESS ("High energy stereoscopic system") realizovaný mezinárodní kolaborací (Německo, Francie, Velká Británie, Irská republika, Jihoafrická republika, Arménie, Namibie a Česká republika) na jižní polokouli. Poprvé se podařilo rozlišit morfologii pozůstatků supernov, a ukázat tak, že jsou to možné zdroje kosmického záření. Experiment HESS objevil v galaktické rovině 17 nových zdrojů kosmického záření a zcela neočekávaně i zdroje vysokoenergetických kvant γ, které nejsou pozorovány v ostatních oborech elektromagnetického záření (optického, radiového nebo rentgenového). Kromě galaktických zdrojů HESS pozoroval i aktivní galaktická jádra. Z naměřených dat vyplývá, že Vesmír je pro vysokoenergetická kvanta γ průhlednější, než se dosud předpokládalo. Stručně je popsána druhá fáze experimentu HESS: Ke stávajícím čtyřem teleskopům bude přidán další, který umožní snížit prahovou energii experimentu. Výstavba tohoto teleskopu bude ukončena v roce 2008., Dalibor Nedbal, Ladislav Rob., and Obsahuje seznam literatury
Mezinárodní olympiáda v astronomii a astrofyzice (IOAA) byla založena v roce 2007 v Thajsku. Iniciujícími státy byly mimo Thajska také Indonésie, Írán, Čína a Polsko. Základní ideou a vizí bylo zejména více rozšířit astronomii a astrofyziku mezi studenty středních škol. Tento úkol byl bezezbytku naplněn postupným rozvojem spolupráce mezi mladými astronomy na mezinárodní úrovni. Čeští studenti se IOAA poprvé zúčastnili v roce 2010. and Jana Žďárská.
V příspěvku se seznámíme s vývojem počítačů od starověkých mechanismů přes analogové až po dnešní digitální. Přiblížíme si nejstarší dnes známý počítač - Antikytherský stroj. Popíšeme rozdíl mezi analogovým a číslicovým počítačem a uvedeme příklad jejich mezistupně. Budeme ilustrovat vývoj rychlosti počítačů, odhadneme počet všech provedených aritmetických operací a zmíníme světový úspěch českých programátorů., Pavel Pokorný., and Obsahuje seznam literatury