Dnešní terestrické ekosystémy jsou do značné míry produktem koevoluce rostlin a hmyzu, který představuje vůbec nejpočetnější a nejrozmanitější skupinu živočichů. Počátky tohoto vzájemného působení lze vysledovat stovky milionů let do minulosti, přičemž postupně docházelo k nárůstu jeho komplexity. Nejčastějšími doklady těchto složitých vztahů jsou fosilizované listy nebo jejich otisky, vykazující často specifické i nespecifické poškození, jako jsou miny nebo hálky, stopy po ovipozici, popřípadě nejrůznější typy okusů. Kvalitativní a kvantitativní analýza těchto stop má velký význam při studiu evolučních procesů v rámci výše uvedených skupin organismů. Detekované změny v dynamice trofických vztahů mezi hmyzem a jeho rostlinnými hostiteli pomáhají zpřesnit představu o vlivu měnícího se prostředí na okolní biotu, jakož i poskytují vodítko pro stanovování průběhu klimatických změn v čase., Contemporary terrestrial ecosystems are largely a product of the coevolution of plants and insects, which are the most prevalent and diverse group of animals. The origin of these interactions can be traced hundreds of millions of years back followed by a gradual increase in their complexity. The most common evidence of these complex relationships is represented by the fossilized leaves, often having specific and non-specific damage such as the mines, galls, traces of oviposition, or various types of feeding. Qualitative and quantitative analyses of these ichnofossils are of great importance with regard to the study of the evolutionary processes occurring among these groups of organisms. The detected changes in the dynamics of trophic relationships between insects and their host plants help to clarify ideas regarding the impact on the developing environment and organisms, and provide evidence for the recognition of trends in climate changes in the past., and Stanislav Knor, Jakub Prokop.
IsiA is a membrane-bound Chl a-antenna protein synthesized in cyanobacteria under iron deficiency. Since iron deficiency is a common nutrient stress in significant fractions of cyanobacterial habitats, IsiA is likely to be essential for some cyanobacteria. However, the role it plays in cyanobacteria is not fully understood. In this review paper, we summarize the research efforts directed towards characterizing IsiA over the past three decades and attempt to bring all the pieces of the puzzle together to get a more comprehensive understanding of the function of this protein. Moreover, we analyzed the genomes of over 390 cyanobacterial strains available in the JGI/IMG database to assess the distribution of IsiA across the cyanobacterial kingdom. Our study revealed that only 125 such strains have an IsiA homolog, suggesting that the presence of this protein is a niche specific requirement, and cyanobacterial strains that lack IsiA might have developed other mechanisms to survive iron deficiency., H.-Y. S. Chen, A. Bandyopadhyay, H. B. Pakrasi., and Obsahuje bibliografické odkazy
Fusilade (fluazifop-p-butyl) is one of the herbicides that inhibit acetyl-CoA carboxylase. The exogenous effect of 30, 60, and 90 ppm fusilade on peanut (Arachis hypogaea L. cv. Giza 5) leaves was studied. With increasing fusilade concentration, the peanut leaf chlorosis appeared after 7-10 d. Declined leaf pigment contents confirmed the leaf chlorosis. Electron microscopic observation of the fusilade-treated (FT) leaves revealed disorganization in the ultrastructure of mesophyll cell chloroplasts. An increase of plastoglobuli occurrence within chloroplasts and degenerated grana thylakoids were observed in FT leaves. Fusilade treatments induced mainly the enhancement of malondialdehyde content and the activities of peroxidases (guaiacol and ascorbate). On contrary, a decrease in H2O2 content, catalase and superoxide dismutase activities was recorded. Enhancements of the guaiacol and ascorbate peroxidase activities were associated with the decreasing H2O2 content in the FT leaves. Hydrogen peroxide seems not to be involved in the oxidative stress of FT leaves. In the FT leaves, the oxidative stress confirmed by chlorophyll degradation and lipid peroxidation might be caused by the other reactive oxygen species probably due to the decrease of superoxide dismutase activity., K. A. Fayez, D. E. M. Radwan, A. K. Mohamed, A. M. Abdelrahman., and Obsahuje bibliografii
The response of some photosynthetic parameters (CO2 assimilation, transpiration rate, stomatal conductance, intercellular CO2 concentration, water-use efficiency, and chlorophyll content), shoot development, and the morphological features of the root system to differentiated conditions of nitrogen supply was tested in festulolium (Festulolium braunii K. Richert A. Camus) varieties (Felopa and Sulino). Nitrogen fertilization with no nitrogen added
[0 g(N)], single dosage [0.23 g(N)], and double dosage [0.46 g(N)] per pot and per year was applied. Lack of nitrogen resulted in formation of longer and finer roots and lowered chlorophyll content, CO₂ assimilation, and water-use efficiency, resulting in lower dry matter accumulation. Application of both dosages of nitrogen resulted in improved aboveground features, while root features were enhanced without nitrogen fertilization. Dependence between physiological parameters and morphological traits was significant and positively correlated in the case of the aboveground parts of plants and negatively correlated to the belowground parts., G. Mastalerczuk, B. Borawska-Jarmułowicz, H. M. Kalaji, P. Dąbrowski, J. Paderewski., and Obsahuje bibliografii
We studied water relations and gas exchange in six almond genotypes grafted on GF677 in response to withholding irrigation for 14 days and a subsequent 10-day rehydration period. The responses to drought stress significantly differed in the almond genotypes; the tolerant plants were distinguished and monitored. Leaf relative water content (RWC) decreased by more than 23%, leaf water potential dropped to less than -4.3 MPa, and electrolyte leakage increased to 43% in dehydration-sensitive genotypes. Photosynthesis (PN) and stomatal conductance (gs) of drought-sensitive genotypes were significantly reduced by 70% and 97% in response to water deficiency. Water stress significantly enhanced wateruse efficiency up to 10 folds in drought-tolerant almonds. The difference between leaf temperature and its surrounding air temperature (ΔT) increased significantly to more than 187% under water stress in drought-tolerant genotypes. In addition, the reduction in the g s and further ability to preserve RWC were involved probably in drought-tolerance mechanism in almond. Negative significant correlations were found between ΔT, PN, and gs. Based on the correlations, we suggested that ΔT could be used as a simple measurement for monitoring water stress development in the irrigation management of almond orchards. In conclusion, ‘Supernova’ and the Iranian genotypes ‘6-8’ and ‘B-124’, were found to be more droughttolerant compared with other genotypes in this experiment., S. Karimi, A. Yadollahi, K. Arzani, A. Imani, M. Aghaalikhani., and Obsahuje bibliografii
In this work, photosystem II (PSII) photochemistry, leaf water potential, and pigment contents of male and female Pistacia lentiscus L. were investigated during a seasonal cycle at three different, arid locations: superior semiarid, inferior semiarid, and arid. The results showed that the gender, season, and the site conditions interacted to influence the quantum yield and pigment contents in P. lentiscus. Predawn leaf water status was determined only by the site and season. The annual patterns of PSII maximum quantum efficiency (Fv/Fm) were characterized by a suboptimal activity during the winter, especially, populations with the more negative water potential exhibited a lower chlorophyll (Chl) a content and chronic photoinhibition irrespective of a gender. We also demonstrated that both photochemical or nonphotochemical mechanisms were involved to avoid the photoinhibition and both of them depended on the season. This plasticity of photosynthetic machinery was accompanied by changes in carotenoids and Chl balance. In the spring, the female Fv/Fm ratio was significantly higher than in male individuals, when the sexual dimorphism occurred during the fruiting stage, regardless of site conditions. P. lentiscus sex-ratio in Mediterranean areas, where precipitations exceeded 500 mm, was potentially female-biased. Among the fluorescence parameters investigated, nonphotochemical quenching coefficient appeared as the most useful one and a correlation was found between Chl a content and Fv/Fm. These results suggest that functional ecology studies would be possible on a large scale through light reflectance analysis. and S. Ait Said ... [et al.].
The genetic basis of stomatal conductance (gs), net photosynthetic rate (PN), and transpiration rate (E) was explored by using a wheat doubled haploid population from a cross of Hanxuan10 and Lumai 14. The above three traits were evaluated in wheat flag leaves at 10, 20, 30 days after anthesis under drought stress (DS) and well-watered (WW), and quantitative trait loci (QTL) were analyzed. Expression of the traits during the grain filling stage showed downward trends under both conditions, but expression of three phenotypes were stronger under WW than those under DS. Extremely significant positive correlations were established among the traits at all growth stages under both conditions. A total of 18 additive QTLs for those traits were identified on 10 chromosomes. Among them, two batches of nine additive QTLs were associated with the target traits under DS and WW, respectively. Two additive QTLs for gs and E, two for gs and PN, six for gs, PN, and E clustered at the same or near the region (colocation) of chromosomes 4A, 2B, and 7B, respectively. This provided genetic basis for close phenotype correlations among gs, PN, and E. Furthermore, QTLs for gs, PN, and E near Xgwm577 and Xgwm611 located on 7B chromosome were linked to previously reported QTLs regulating a SPAD value and the chlorophyll a/b ratio under dark-induced condition. This finding indicated that these QTLs on 7B chromosome might be involved in the process of wheat leaf senescence., S. G. Wang, S. S. Jia, D. Z. Sun, H. Y. Wang, F. F. Dong, H. X. Ma, R. L. Jing, G. Ma., and Obsahuje bibliografii
Metabolite changes and senescence behaviour after mechanical phloem girdling were studied in leaf tissue of Quercus pubescens. Sugar accumulation is not only considered to be an important part of several developmental signalling pathways, but is also seen as one of the basic triggers for senescence induction, or at least an obligatory accessory phenomenon. Our survey showed that an accumulation of the soluble sugars, glucose and fructose, was not on its own obligatorily connected with the induction of leaf senescence, since no indication or even an onset of senescence could be observed during the course of the experiment. Instead, we observed an inhibition of leaf development with a decrease of photosynthesis and a slow-down of development in nearly all chlorophyll a fluorescence analysis parameters using the JIP-test. We detected a change of metabolites linked to oxidative stress, possibly due to an overexcitation of the developmentally inhibited photosynthetic apparatus., V. Holland, L. Fragner, T. Jungcurt, W. Weckwerth, W. Brüggemann., and Obsahuje bibliografii