We study the presence of copies of ln p ’s uniformly in the spaces 2(C[0, 1],X) and 1(C[0, 1],X). By using Dvoretzky’s theorem we deduce that if X is an infinite- dimensional Banach space, then 2(C[0, 1],X) contains p2-uniformly copies of ln∞’s and 1(C[0, 1],X) contains -uniformly copies of ln 2 ’s for all > 1. As an application, we show that if X is an infinite-dimensional Banach space then the spaces 2(C[0, 1],X) and 1(C[0, 1],X) are distinct, extending the well-known result that the spaces 2(C[0, 1],X) and N(C[0, 1],X) are distinct., Dumitru Popa., and Seznam literatury
An n × n sign pattern A is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as A. Let D_{n,r} be an n × n sign pattern with 2 \geqslant r \geqslant n such that the superdiagonal and the (n, n) entries are positive, the (i, 1) (i = 1,..., r) and (i, i − r + 1) (i = r + 1,..., n) entries are negative, and zeros elsewhere. We prove that for r \geqslant 3 and n \geqslant 4r − 2, the sign pattern D_{n,r} is not potentially nilpotent, and so not spectrally arbitrary., Yanling Shao, Yubin Gao, Wei Gao., and Obsahuje seznam literatury
This paper is devoted to the study of matrix elements of irreducible representations of the enveloping deformed Heisenberg algebra with reflection, motivated by recurrence relations satisfied by hypergeometric functions. It is shown that the matrix elements of a suitable operator given as a product of exponential functions are expressed in terms of d-orthogonal polynomials, which are reduced to the orthogonal Meixner polynomials when d = 1. The underlying algebraic framework allowed a systematic derivation of the recurrence relations, difference equation, lowering and rising operators and generating functions which these polynomials satisfy., Fethi Bouzeffour, Hanen Ben Mansour, Ali Zaghouani., and Obsahuje bibliografii
A classical result in number theory is Dirichlet’s theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly k prime factors for k>1. Building upon a proof by E.M.Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree n 6 x with k prime factors such that a fixed quadratic equation has exactly 2k solutions modulo n., Neha Prabhu., and Seznam literatury
Erster Theil, Die Theorie der Anschauung oder die Mathematischen Gesetze. Enthaltend die allgemeinen Gesetze der Zahl und die besonderen Gesetze des Raumes, der Zeit, der Kraft, der Neigung und des Triebes, von Hermann Scheffler., KČSN, and Mit 4 Figurentafeln
We consider quasirandom properties for Cayley graphs of finite abelian groups. We show that having uniform edge-distribution (i.e., small discrepancy) and having large eigenvalue gap are equivalent properties for such Cayley graphs, even if they are sparse. This affirmatively answers a question of Chung and Graham (2002) for the particular case of Cayley graphs of abelian groups, while in general the answer is negative., Yoshiharu Kohayakawa, Vojtěch Rödl, Mathias Schacht., and Obsahuje seznam literatury
Let $G$ be a locally compact group and let $1 \le p < \infty.$ Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space $L^p(G)$ in terms of the weights. Sufficient and necessary conditions for disjoint hypercyclic and disjoint supercyclic powers of weighted translations generated by aperiodic elements on groups will be given., Liang Zhang, Hui-Qiang Lu, Xiao-Mei Fu, Ze-Hua Zhou., and Obsahuje bibliografické odkazy
The Bruhat order is defined in terms of an interchange operation on the set of permutation matrices of order n which corresponds to the transposition of a pair of elements in a permutation. We introduce an extension of this partial order, which we call the stochastic Bruhat order, for the larger class Ω_{n} of doubly stochastic matrices (convex hull of n×n permutation matrices). An alternative description of this partial order is given. We define a class of special faces of Ω_{n} induced by permutation matrices, which we call Bruhat faces. Several examples of Bruhat faces are given and several results are presented., Richard A. Brualdi, Geir Dahl, Eliseu Fritscher., and Obsahuje seznam literatury