Training data for the WMT 2017 Automatic post-editing task (the same used for the Sentence-level Quality Estimation task). They consist in 11,000 English-German triplets (source, target and post-edit) belonging to the IT domain and already tokenized. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Training and development data for the WMT17 QE task. Test data will be published as a separate item.
This shared task will build on its previous five editions to further examine automatic methods for estimating the quality of machine translation output at run-time, without relying on reference translations. We include word-level, phrase-level and sentence-level estimation. All tasks will make use of a large dataset produced from post-editions by professional translators. The data will be domain-specific (IT and Pharmaceutical domains) and substantially larger than in previous years. In addition to advancing the state of the art at all prediction levels, our goals include:
- To test the effectiveness of larger (domain-specific and professionally annotated) datasets. We will do so by increasing the size of one of last year's training sets.
- To study the effect of language direction and domain. We will do so by providing two datasets created in similar ways, but for different domains and language directions.
- To investigate the utility of detailed information logged during post-editing. We will do so by providing post-editing time, keystrokes, and actual edits.
This year's shared task provides new training and test datasets for all tasks, and allows participants to explore any additional data and resources deemed relevant. A in-house MT system was used to produce translations for all tasks. MT system-dependent information can be made available under request. The data is publicly available but since it has been provided by our industry partners it is subject to specific terms and conditions. However, these have no practical implications on the use of this data for research purposes.
Test data for the WMT17 QE task. Train data can be downloaded from http://hdl.handle.net/11372/LRT-1974
This shared task will build on its previous five editions to further examine automatic methods for estimating the quality of machine translation output at run-time, without relying on reference translations. We include word-level, phrase-level and sentence-level estimation. All tasks will make use of a large dataset produced from post-editions by professional translators. The data will be domain-specific (IT and Pharmaceutical domains) and substantially larger than in previous years. In addition to advancing the state of the art at all prediction levels, our goals include:
- To test the effectiveness of larger (domain-specific and professionally annotated) datasets. We will do so by increasing the size of one of last year's training sets.
- To study the effect of language direction and domain. We will do so by providing two datasets created in similar ways, but for different domains and language directions.
- To investigate the utility of detailed information logged during post-editing. We will do so by providing post-editing time, keystrokes, and actual edits.
This year's shared task provides new training and test datasets for all tasks, and allows participants to explore any additional data and resources deemed relevant. A in-house MT system was used to produce translations for all tasks. MT system-dependent information can be made available under request. The data is publicly available but since it has been provided by our industry partners it is subject to specific terms and conditions. However, these have no practical implications on the use of this data for research purposes.
Training and development data for the WMT 2018 Automatic post-editing task. They consist in English-German triplets (source, target and post-edit) belonging to the information technology domain and already tokenized. Training and development respectively contain 13,442 and 1,000 triplets. A neural machine translation system has been used to generate the target segments. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Test data for the WMT18 QE task. Train data can be downloaded from http://hdl.handle.net/11372/LRT-2619.
This shared task will build on its previous six editions to further examine automatic methods for estimating the quality of machine translation output at run-time, without relying on reference translations. We include word-level, phrase-level and sentence-level estimation. All tasks make use of datasets produced from post-editions by professional translators. The datasets are domain-specific (IT and life sciences/pharma domains) and extend from those used previous years with more instances and more languages. One important addition is that this year we also include datasets with neural MT outputs. In addition to advancing the state of the art at all prediction levels, our specific goals are:
To study the performance of quality estimation approaches on the output of neural MT systems. We will do so by providing datasets for two language language pairs where the same source segments are translated by both a statistical phrase-based and a neural MT system.
To study the predictability of deleted words, i.e. words that are missing in the MT output. TO do so, for the first time we provide data annotated for such errors at training time.
To study the effectiveness of explicitly assigned labels for phrases. We will do so by providing a dataset where each phrase in the output of a phrase-based statistical MT system was annotated by human translators.
To study the effect of different language pairs. We will do so by providing datasets created in similar ways for four language language pairs.
To investigate the utility of detailed information logged during post-editing. We will do so by providing post-editing time, keystrokes, and actual edits.
Measure progress over years at all prediction levels. We will do so by using last year's test set for comparative experiments.
In-house statistical and neural MT systems were built to produce translations for all tasks. MT system-dependent information can be made available under request. The data is publicly available but since it has been provided by our industry partners it is subject to specific terms and conditions. However, these have no practical implications on the use of this data for research purposes. Participants are allowed to explore any additional data and resources deemed relevant.
Training and development data for the WMT18 QE task. Test data will be published as a separate item.
This shared task will build on its previous six editions to further examine automatic methods for estimating the quality of machine translation output at run-time, without relying on reference translations. We include word-level, phrase-level and sentence-level estimation. All tasks make use of datasets produced from post-editions by professional translators. The datasets are domain-specific (IT and life sciences/pharma domains) and extend from those used previous years with more instances and more languages. One important addition is that this year we also include datasets with neural MT outputs. In addition to advancing the state of the art at all prediction levels, our specific goals are:
To study the performance of quality estimation approaches on the output of neural MT systems. We will do so by providing datasets for two language language pairs where the same source segments are translated by both a statistical phrase-based and a neural MT system.
To study the predictability of deleted words, i.e. words that are missing in the MT output. TO do so, for the first time we provide data annotated for such errors at training time.
To study the effectiveness of explicitly assigned labels for phrases. We will do so by providing a dataset where each phrase in the output of a phrase-based statistical MT system was annotated by human translators.
To study the effect of different language pairs. We will do so by providing datasets created in similar ways for four language language pairs.
To investigate the utility of detailed information logged during post-editing. We will do so by providing post-editing time, keystrokes, and actual edits.
Measure progress over years at all prediction levels. We will do so by using last year's test set for comparative experiments.
In-house statistical and neural MT systems were built to produce translations for all tasks. MT system-dependent information can be made available under request. The data is publicly available but since it has been provided by our industry partners it is subject to specific terms and conditions. However, these have no practical implications on the use of this data for research purposes. Participants are allowed to explore any additional data and resources deemed relevant.
Marian NMT model for Catalan to Occitan translation. It is a multi-task model, producing also a phonemic transcription of the Catalan source. The model was submitted to WMT'21 Shared Task on Multilingual Low-Resource Translation for Indo-European Languages as a CUNI-Contrastive system for Catalan to Occitan.
Marian NMT model for Catalan to Occitan translation. Primary CUNI submission for WMT21 Multilingual
Low-Resource Translation for Indo-European Languages Shared Task.
Marian multilingual translation model from Catalan into Romanian, Italian and Occitan. Primary CUNI submission for WMT21 Multilingual
Low-Resource Translation for Indo-European Languages Shared Task.
This dataset comprises a corpus of 50 text contexts, each about 60 words in length, sourced from five distinct domains. Each context has been evaluated by multiple annotators who identified and ranked the most important words—up to 10% of each text—according to their perceived significance. The annotators followed specific guidelines to ensure consistency in word selection and ranking. For further details, please refer to the cited source.
---
rankings_task.csv
- This csv contains information about the contexts which are to be annotated:
- id: A unique identifier for each task.
- content: The context to be ranked.
---
rankings_ranking.csv
- This csv includes ranking information for various assignments. It contains four columns:
- id: A unique identifier for each ranking entry.
- score: The score assigned to the entry.
- word_order: A JSON detailing the order of words positions. It is essentially the selected word positions and their ordering from an annotator.
- assignment_id: A reference ID linking to the assignments.
---
rankings_assignment.csv
- This csv tracks the completion status of tasks by users. It includes four columns:
- id: A unique identifier for each assignment entry.
- is_completed: A binary indicator (1 for completed, 0 for not completed).
- task_id: A reference ID linking to the tasks.
- user_id: The identifier for the user who should complete the task (rank the words).
---
Known Issues:
Please note that each annotator was intended to rank each context only once. However, due to a bug in the deployment of the annotation tool, some entries may be duplicated. Users of this dataset should be cautious of this issue and verify the uniqueness of the annotations where necessary.
---
This dataset is a part of work from a bachelor thesis:
OSUSKÝ, Adam. Predicting Word Importance Using Pre-Trained Language Models. Bachelor thesis, supervisor Javorský, Dávid. Prague: Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics, 2024.