Oxidative stress is a phenomenon associated with imbalance between production of free radicals and reactive metabolites (e.g. superoxide and hydrogen peroxide) and the antioxidant defences. Oxidative stress in individuals with Down syndrome (DS) has been associated with trisomy of the 21st chromosome resulting in DS phenotype as well as with various morphological abnormalities, immune disorders, intellectual disability, premature aging and other biochemical abnormalities. Trisomy 21 in patients with DS results in increased activity of an important antioxidant enzyme Cu/Zn superoxide dismutase (SOD) which gene is located on the 21st chromosome along with other proteins such as transcription factor Ets-2, stress inducing factors (DSCR1) and precursor of beta-amyloid protein responsible for the formation of amyloid plaques in Alzheimer disease. Mentioned proteins are involved in the management of mitochondrial function, thereby promoting mitochondrial theory of aging also in people with DS. In defence against toxic effects of free radicals and their metabolites organism has built antioxidant defence systems. Their lack and reduced function increases oxidative stress resulting in disruption of the structure of important biomolecules, such as proteins, lipids and nucleic acids. This leads to their dysfunctions affecting pathophysiology of organs and the whole organism. This paper examines the impact of antioxidant interventions as well as positive effect of physical exercise on cognitive and learning disabilities of individuals with DS. Potential terapeutic targets on the molecular level (oxidative stress markers, gene for DYRK1A, neutrophic factor BDNF) after intervention of natural polyphenols are also discussed., J. Muchová, I Žitňanová, Z. Ďuračková., and Obsahuje bibliografii
Long-term effects of renal denervation (DNX) commonly include a decrease in blood pressure (BP), observed in both normotensive animals and various models of hypertension. On the other hand, short term BP re sponses vary. We examined how post-DNX increase in BP observed in this study depends on baseline metabolic and functional status of an imals, with a special interest for the role of oxidative stress. Anesthetized Wistar rats on standard (STD), low-sodium (LS) or high-sodium (HS) diet were used, untreated or pre-treated with tempol, a superoxide scavenger, or N(omeg a)-propyl-L-arginine (L-NPA), an inhibitor of neuronal NOS (nNOS). Early BP and renal hemodynamic responses were examined to right- and then left- side DNX performed using an own relatively non-invasive technique. Left kidney cortical, outer- and inner-medullary blood flows (CBF, OMBF, IMBF) were co ntinuously recorded as laser- Doppler fluxes. Sequential denervat ions significantly increased BP to final 19 %, 12 %, and 6 % above control level in HS, LS, and STD groups, respectively. CBF, a measure of total renal perfusion, increased in LS and STD but not in HS rats. Tempol pretreatment prevented the post-denervation BP increase on each diet. Selective inhibition of nNOS prevented BP increase in STD and HS groups, a modest incr ease persisted in LS rats. We propose that enhanced afferent impulsation from intrarenal chemoreceptors related to oxidative stress in the kidney was the background for acute BP increase after DNX. The response was triggered by a release of brain sympatho-excitatory centers from inhibition by renal afferents, this was followed by widespread sympathetic cardiovascular stimulation., A. Walkowska, J. Sadowski, E. Kompanowska-Jezierska., and Obsahuje seznam literatury
Glutamate is the main excitatory neurotransmitter in the brain and ionotropic glutamate receptors mediate the majority of excitatory neurotransmission (Dingeldine et al. 1999). The high level of glutamatergic excitation allows the neonatal brain (the 2 nd postnatal week in rat) to develop quickly but it also makes it highly prone to age-specific seizures that can cause lifelong neurological and cognit ive disability (Haut et al. 2004). There are three types of ionotropic glutamate receptors (ligand-gated ion channels) named according to their prototypic agonists: N- methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl- isoxazol-4-yl) propanoic acid (AMPA) and kainate (KA). During early stages of postnatal development glutamate receptors of NMDA and AMPA type undergo intensive functional changes owing to modifications in their subunit composition (Carter et al. 1988, Watanabe et al. 1992, Monyer et al. 1994, Wenzel et al. 1997, Sun et al. 1998, Lilliu et al. 2001, Kumar et al. 2002, Matsuda et al. 2002, Wee et al. 2008, Henson et al. 2010, Pachernegg et al. 2012, Paoletti et al. 2013). Participation and role of these receptors in mechanisms of seizures and epilepsy became one of the main targets of intensive investigation (De Sarro et al. 2005, Di Maio et al. 2012, Rektor 2013). LiCl/Pilocarpine (LiCl/Pilo) induced status epilepticus is a model of severe seizures resulting in development temporal lobe epilepsy (TLE). This review will consider developmental changes and contribution of NMDA and AMPA receptors in LiCl/Pilo model of status epilepticus in immature rats., J. Folbergrová., and Obsahuje bibliografii a bibliografické odkazy
Malondialdehyde (MDA), Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and selenium-dependent glutathione peroxidase (GSPHx) are currently considered to be basic markers of oxidative stress. MDA is one of the end-products of the peroxidation of membrane lipids, whereas enzymes Cu,Zn-SOD and GSHPx belong to the natural antioxidants. The role of oxygen free radicals in the pathogenesis of many diseases is well documented. The aim of this study was to ascertain the influence of insulin-induced acute hypoglycemia on oxidative stress in the brain tissue. Hypoglycemia was induced in ICR mice by intraperitoneal administration of insulin at a dose 24 IU/kg. There was a correlation between the severity of hypoglycemia and the levels of MDA, Cu,Zn-SOD and GSHPx. The results showed that in severe hypoglycemia (serum glucose concentration below 1.0 mmol/l) the lipoperoxidation in brain tissue expressed as the level of MDA was higher in comparison with normoglycemic controls (glycemia around 3.7 mmol/l) as well as in comparison with the levels of MDA during moderate hypoglycemia (glycemia ranging between 1-2 mmol/l). This indicates the enhancement of lipoperoxidation in the brain tissue during severe hypoglycemia. However, both enzymes - Cu,Zn-SOD or GSHPx - did not show a similar tendency., J. Patočková, P. Marhol, E. Tůmová, M. Kršiak, R. Rokyta, S. Štípek, J. Crkovská, M. Anděl., and Obsahuje bibliografii
An epileptic seizure and postictal period in addition to well-known features are also characterize d by massive consumption of energy. This is thought to lead to oxidative stress and increased generation of free radicals, which is reflected by increased levels of oxidative products. Our previous work described the neuroprotective effects of melatonin in preventing cognitive worsening after a single epileptic seizure. This work was aimed on direct measurement of free radicals in brain tissue using the EPR method 1, 15 and 60 minutes after seizure. The measurement was performed in adult male Wistar rats at the mentioned intervals after a single tonic-clonic seizure induced by flurothyl. In comparison to control animals there was a significant increase in hydroxyl and nitroxyl radicals 60 minutes after the seizure. The levels of hydroxyl radicals were significantly lower in animals that received melatonin 60 minutes before seizure induction compared to animals without preventive treatment. Therefore, melatonin affected th e generation of the measured free radicals differently. An important finding was the delayed increase in free radicals after a single seizure in the later phases of recovery., J. Mareš ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Several pre-clinical and clinical studies have demonstrated zoledronic acid (Zol), which regulates the mevalonate pathway, has efficient anti-cancer effects. Zol can also induce autophagy. The aim of this study is to add new understanding to the mechanism of autophagy induction by Zol. LC3B-II, the marker for autophagy was increased by Zol treatment in breast cancer cells. Autophagosomes induced by Zol were visualized and quantified in both transient (pDendra2-hLC3) and stable MCF-7- GFP-LC3 cell lines. Acidic vesicular organelles were quantified using acridine orange. Zol induced a dose and time dependent autophagy. Treatment of Zol increased oxidative stress in MCF-7 cells, which was reversed by GGOH or anti-oxidants. On the other hand, treatment with GGOH or anti-oxidants resulted in decreased levels of LC3B-II. Further, the induced autophagy was irreversible, as the washout of Zol after 2 h or 24 h resulted in similar levels of autophagy, as induced by continuous treatment after 72 h. Thus, it can be summarized that Zol can induce a dose dependent but irreversible autophagy, by its effect on the mevalonate pathway and oxidative stress. This study adds to the understanding of the mechanism of action of Zol, and that it can induce autophagy at clinically relevant shorter exposure times in cancer cells., V. K. M. Khandelwal, L. M. Mitrofan, J. M. T. Hyttinen, K. R. Chaudhari, R. Buccione, K. Kaarniranta, T. Ravingerová, J. Mönkkönen., and Obsahuje bibliografii
Current treatment of organophosphorus poisoning, resulting in overstimulation and desensitization of muscarinic and nicotinic receptors by acetylcholine (ACh), consists of the administration of atropine and oxime reactiva tors. However, no versatile oxime reactivator has been developed yet and some mortality still remains after application of standard atropine treatment, probably due to its lack of antinicotinic action. In our study, we focused on the interesting non-acetylcholinesterase property of oximes, i.e. antinicotinic effect of reactivators. Two standard reactivators (HI-6, obidoxime) and two new compounds (K027 and K203) were chosen for in vitro (patch clamp) and in vivo (nerve-evoked muscle contraction) testings. Both examinations showed antinicotinic effects of the reactivators. In vitro inhibition of acetylcholine-evoked currents by obidoxime, HI-6 and K203 was equivalent while K027 was less potent. Similar order of potency was observed by the in vivo examinations. We thus confirm previous in vitro results, which describe antinicotinic effects of oxime reactivators, and furthermore, we show in vivo antagonism of oxime reactivators exerted by the inhibition of ACh effect on the nicotinic receptor in the neuromuscular junction. Taking to gether, the effects of tested oxime reactivators indicate an antagonism on both embryonic and adult form of the muscle nicotinic receptors., O. Soukup ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The effect of ozone, a ubiquitous air pollutant, was tested on cultured pulmonary epithelial type II cells isolated from rats. After 40-hour culture, the cells were exposed for 6 h to 400 ppb of ozone or air. The number of micronucleated cells was counted after the exposure. In each group, 17 000 cells were evaluated. The number of micronucleated cells was significantly increased in the ozone-exposed group (12.24 per 1000 cells) compared to the control group (5.00 per 1000 cells). The results showed the mutagenic effect of ozone exposure on alveolar type II cells, manifested in the increased frequency of their micronuclei., D. Chorvatovičová, P.H.M. Hoet, E. Tátrai, Y. Kováčiková., and Obsahuje bibliografii
Only limited data are available on body surface potential distribution during atrial activation. The aim of this study was to establish the distributions and to analyze chosen quantitative parameters of atrial isointegral maps recorded using a limited 24-lead system in a young healthy population. A total of 166 subjects underwent a procedure of body surface potential mapping. Isointegral maps during the P wave were constructed and qualitatively and quantitatively evaluated. Three types of atrial activation in individual maps were found according to the different shape of the zero isointegral line and to mutual positions of extrema. The most frequently occurring type resembled the group mean maps and was in good agreement with published data obtained from full lead systems. The highest extrema were found in the young men group, while, surprisingly, the lowest values in the young women group. All minima and the majority of maxima were recorded outside the ranges of standard chest leads. The usefulness of the limited lead system to record isointegral P wave maps was shown and new data were presented that can be useful in noninvasive evaluation of atrial pathologies., K. Kozlíková., and Obsahuje bibliografii