Chronic airflow limitation, caused by chronic obstructive pulmonary disease (COPD) or by asthma, is believed to change the shape and the position of the diaphragm due to an increase in lung volume. We have made a comparison of magnetic resonance imaging (MRI) of diaphragm in supine position with pulmonary functions, respiratory muscle function and exercise tolerance. We have studied the differences between patients with COPD, patients with asthma, and healthy subjects. Most interestingly we found the lung hyperinflation leads to the changes in diaphragmatic excursions during the breathing cycle, seen in the differences between the maxim al expiratory diaphragm position (DPex) in patients with COPD and control group (p=0.0016) . The magnitude of the diaphragmatic dysfunction was significantly related to the airflow limitation expressed by the ratio of forced expiratory volume in 1 s to slow vital capacity (FEV 1 /SVC) , (%, p=0.0007); to the lung hyperinflation expressed as the ratio of the residual volume to total lung capacity (RV/TLC), (%, p=0.0018) and the extent of tidal volume constrain expressed as maximal tidal volume (V Tmax ), ([l], p=0 .0002); and the ratio of tidal volume to slow vital capacity (VT/SVC), (p=0.0038) during submaximal exercise. These results suggest that diaphragmatic movement fails to contribute sufficiently to the change in lung volume in emphysema. Tests of respiratory muscle function were related to the position of the diaphragm in deep expiration, e.g. neuromuscular coupling (P 0.1 /VT) (p=0.0232). The results have shown that the lung volumes determine the position of the diaphragm and function of the respiratory muscles. Chronic airflow limitation seems to change the position of the diaphragm, which thereafter influences inspiratory muscle function and exercise tolerance. There is an apparent relationship between the position of the diaphragm and the pulmonary functions and exercise tolerance., L. Hellebrandová, J. Chlumský, P. Vostatek, D. Novák, Z. Rýznarová, V. Bunc., and Obsahuje bibliografii
From the very first experiments performed with high intensity laser pulse interaction with matter it has been clear that laser produced plasma is a rich source of emitting high energetic particles and electromagnetic radiation in a broad spectral range. In this article a basic phenomenon of nonlinear processes of high intensity laser pulse interaction and related acceleration of particles in laser induced thermal plasma are outlined. possible applications of ultra-short mono-energetic electron beams (with divergence and small energy spread) which are generated during this interaction are also discussed., Už od vykonania prvých experimentov použitím intenzívneho laserového žiarenia s hmotou bolo zrejmé, že laserom indukovaná plazma je bohatým zdrojom vysokoenergetických častíc a elektromagnetického žiarenia v širokej škále spektrálnych oblastí. V článku je bližšie uvedená problematika nelineárnych javov počas vysokointenzívnych laserových interakcií a s tým súvisiacu aj akceleráciu častíc v laserom indukovanej termálnej plazme. Taktiež sú uvedené aj potencionálne možné aplikácie vysokoenergetických elektrónových zväzkov, které sú generované pri týchto interakciách a dosahujú rýchlosti blízke rýchlosti svetla., Richard Viskup, Peter Lukáč., and Obsahuje bibliografii
Kolobeh hmôt v zemskéj kôre a na jej povrchu je velmi výrazne ovplyvňovaný fyzikálnymi silami, ktoré na teleso planéty pôsobia zvonku - od účinku vektorov jej vlastného pohybu, cez gravitačné pôsobenie jej obežnice - Mesiaca a blízkych planét, až po fluktuácie prísunu energie z nám najbližšej hviezdy - Slnka. Rozoznanie záznamu týchto vplyvov v horninovom slede a porozumenie im je cestou vedúcou k spresneniu astronomickej časomernej škály a detailnejšiemu poznaniu procesov formovania Zeme a života na nej., Rock cycling both in the Earth‘s crust and on its surface is impressively controlled by physical forces that act on the body of our planet from the outside, i.e. from the effect of its own motion vectors, through the gravity of the Moon and nearby planets to fluctuations in the energy input from our nearest star, i.e. the Sun. The recognition of evidence of these influences in the rock sequence and their understanding is a method used to specify the astronomical time scale and to understand, in detail, processes of formation of the Earth and indeed life on it., Jozef Michalík., and Obsahuje seznam literatury
Because greater Akt substrate of 160 kDa (AS160) phosphorylation has been reported in insulin-stimulated skeletal muscles without improved Akt activation several hours post-exercise, we hypothesized that prior exercise would result in attenuated AS160 dephosphorylation in insulin-stimulated rat skeletal muscle. Epitrochlearis muscles were isolated from rats that were sedentary (SED) or exercised 3 h earlier (3 h postexercise; 3hPEX). Paired muscles were incubated with [3H]-2-deoxyglucose (2-DG) without insulin or with insulin. Lysates from other insulin-stimulated muscles from SED or 3hPEX rats were evaluated using AS160Thr642 and AS160Ser588 dephosphorylation assays. Prior exercise led to greater 2-DG uptake concomitant with greater AS160Thr642 phosphorylation and a non-significant trend (P=0.087) for greater AS160Ser588. Prior exercise also reduced AS160Thr642 and AS160Ser588 dephosphorylation rates. These results support the idea that attenuated AS160 dephosphorylation may favor greater AS160 phosphorylation post-exercise., E. B. Arias, H. Wang, G. D. Cartee., and Seznam literatury
Considerable evidence demonstrates that phenotypic switching of vascular smooth muscle cells (VSMCs) is influenced by aging and hypertension. During phenotypic switching, VSMCs undergo a switch to a proliferative and migratory phenotype, with this switch being a common pathology in cardiovascular diseases. The aim of this study was to explore the joint influence of age and hypertension on thoracic aortic smooth muscle phenotypic switching and the balance of Akt and mitogen-activated protein kinase (MAPK) signaling during this switch. Different ages of spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were used to establish hypertension and aging models. The phenotypic state was determined by detecting the marker proteins α-SM-actin, calponin, and osteopontin (OPN) via immunohistochemical staining and Western blot. Signaling proteins associated with the Akt and MAPK pathways were detected in rat thoracic aorta using Western blot. Both aging and hypertension caused a decrease in contractile (differentiated) phenotype markers (α-SM-actin and calponin), while the synthetic (proliferative or de-differentiated) phenotype maker was elevated (OPN). When combining hypertension and aging, this effect was enhanced, with Akt signaling decreased, while MAPK signaling was increased. These results suggested that VSMCs phenotype switching is modulated by a balance between Akt and MAPK signaling in the process of aging and hypertension., Lin Zhang, Zhaoxia Xu, Ying Wu, Jingwen Liao, Fanxing Zeng, Lijun Shi., and Obsahuje bibliografii