The phylogeographic pattern of the temperate shrub Lonicera nigra (Caprifoliaceae) in Europe was inferred from molecular and fossil data. Population samples and pollen data from most of the contemporary natural distribution were analysed. While chloroplast DNA sequences revealed no intraspecific variation, AFLP data show a non-random geographic pattern. Two genetically different groups, distinguished by Bayesian clustering, divided the distribution area of L. nigra into south-western and north-eastern regions with a contact zone situated approximately in the upper part of the Danube Valley. Iberian populations constitute an additional distinct genetic group. Pollen evidence supports the genetic data, indicating that L. nigra might have survived in glacial refugia located in Central Europe. Nevertheless, this evidence should be considered only as indicative and supplementary, as an unambiguous determination of the species is not possible based on the information on pollen in the literature.
Cicerbita alpina was selected to elucidate the phylogeography of tall-herb species, an ecological group whose Quaternary history is rarely addressed. This species is a typical component of subalpine herbaceous communities in the mountains of Europe. Samples collected for this study comprised the entire range of species, with a focus on those in the Carpathians. The analysis based on AFLP fingerprinting revealed a lack of a strong phylogeographical structure implying that the different parts of the present-day range have not been isolated for a long period of time probably due to the biological characteristics of the species, such as its ability to disperse over great distances. However, the genetic structure indicates some phylogeographical trends, which may reflect traces of survival in local refugia and subsequent diversification into separate lineages during the last glacial period. Within the Carpathians, the division into the Western and South-Eastern Carpathian population groups is apparent. This division is maintained at a larger scale. In particular, the South-Eastern Carpathian group is similar to the Balkan populations, while the Western Carpathian populations are closely related to those in the Eastern Alps and Sudetes. The Scandinavian populations also have a genetic affinity with the latter group and originated from a source in the Eastern Alps or Western Carpathians, presumably via a stepping stone in a northern refugium.
Tomicus piniperda is a pest in pine stands in Eurasia and is also found in the USA, where it has caused a decline in the abundance of pine since 1992. Knowledge of the genetic structure of pine shoot beetle populations is important for understanding their phylogeographic history and for quarantine control. In this study, European, Asian and American T. piniperda populations were analyzed by sequencing a region of the mitochondrial COI gene. Twenty-five haplotypes (HT) were detected and over 70% of these HT were found in individual areas, e.g. 5 HT in China, 5 HT in France and 3 HT in Spain. Nested clade analysis revealed that most European and the American population was in a clade containing 9 HT connected by one to two mutational steps. A second clade contained HT from France (2 HT), Spain (2 HT), Sweden (1 HT), Russia (1 HT) and China (5 HT). In this clade, one to 13 mutational steps and 13 missing or theoretical HT were detected. The third clade had 5 HT from France, Russia, Poland, Finland and Switzerland; 1 to 7 mutational steps and 5 missing or theoretical HT were detected. Although only a few significant relationships were found in the nested clade analysis, the following conclusions can be drawn: (1) T. piniperda is a polymorphic species with numerous HT throughout Europe, and HT are likely to exist regarding the missing or theoretical HT; (2) It is likely there were refugial areas in Southern Europe and Western Russia; (3) The Pyrenees formed a barrier to migration after the last ice age; (4) Chinese and European populations have been separated for at least 0.6 MYA.
The genetic variation of the forest dormouse Dryomys nitedula (Pallas, 1779) from isolated populations of Russian Plain and the Caucasus was investigated using cytochrome b gene (cytb). The genetic distance calculated between these populations of forest dormouse was 9.94 %, which corresponds to the typical distance between biological species of mammals. The genetic distance of cytb between Western and Central Caucasus forest dormouse populations is also significant, 6.0 %. Probably, there was a long-term isolation of European and Caucasian areas of D. nitedula during the whole Pleistocene.
The leg bone marrow fat of 11 roe deer (Capreolus capreolus) killed by wolves (Canis lupus) was examined and compared with that of 15 roe deer killed in traffic accidents. Moreover, a sample of 14 red deer (Cervus elaphus) kills was examined. High levels of femur marrow fat (75–100 %) were detected in 45% of the roe deer killed by wolves. The amount of leg bone marrow fat showed a decrease through the winter season, roe deer killed by wolves did not show a significantly lower marrow fat level than those killed in traffic accidents. According to our analyses red deer were in generally poor conditions, and yet such a result cannot be regarded as representative of the average condition of the population.