Lingua::Interset is a universal morphosyntactic feature set to which all tagsets of all corpora/languages can be mapped. Version 2.026 covers 37 different tagsets of 21 languages. Limited support of the older drivers for other languages (which are not included in this package but are available for download elsewhere) is also available; these will be fully ported to Interset 2 in future.
Interset is implemented as Perl libraries. It is also available via CPAN.
En-De translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
The models were trained using the MCSQ social surveys dataset (available at https://repo.clarino.uib.no/xmlui/bitstream/handle/11509/142/mcsq_v3.zip).
Their main use should be in-domain translation of social surveys.
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on MCSQ test set (BLEU):
en->de: 67.5 (train: genuine in-domain MCSQ data only)
de->en: 75.0 (train: additional in-domain backtranslated MCSQ data)
(Evaluated using multeval: https://github.com/jhclark/multeval)
This multilingual resource contains corpora for 14 languages, gathered at the occasion of the 1.2 edition of the PARSEME Shared Task on semi-supervised Identification of Verbal MWEs (2020). These corpora were meant to serve as additional "raw" corpora, to help discovering unseen verbal MWEs.
The corpora are provided in CONLL-U (https://universaldependencies.org/format.html) format. They contain morphosyntactic annotations (parts of speech, lemmas, morphological features, and syntactic dependencies). Depending on the language, the information comes from treebanks (mostly Universal Dependencies v2.x) or from automatic parsers trained on UD v2.x treebanks (e.g., UDPipe).
VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do).
For the 1.2 shared task edition, the data covers 14 languages, for which VMWEs were annotated according to the universal guidelines. The corpora are provided in the cupt format, inspired by the CONLL-U format.
Morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe).
This item contains training, development and test data, as well as the evaluation tools used in the PARSEME Shared Task 1.2 (2020). The annotation guidelines are available online: http://parsemefr.lif.univ-mrs.fr/parseme-st-guidelines/1.2
The corpus contains sentences with idiomatic, literal and coincidental occurrences of verbal multiword expressions (VMWEs) in Basque, German, Greek, Polish and Portuguese. The source corpus is the PARSEME multilingual corpus of VMWEs v 1.1 (cf. http://hdl.handle.net/11372/LRT-2842). The sentences with VMWEs were extracted from the source corpus and potential co-occurrences of the same lexemes were automatically extracted from the same corpus. These candidates were then manually annotated by native experts into 6 classes, including literal and coincidental occurrences, as well as various annotation errors.
The construction of the corpus is described by the following publication:
Agata Savary, Silvio Ricardo Cordeiro, Timm Lichte, Carlos Ramisch, Uxoa Iñurrieta, Voula Giouli (forthcoming) "Literal occurrences of multiword expressions: Rare birds that cause a stir", to appear in Prague Bulletin of Mathematical Linguistics.
This resource is a set of 14 vector spaces for single words and Verbal Multiword Expressions (VMWEs) in different languages (German, Greek, Basque, French, Irish, Hebrew, Hindi, Italian, Polish, Brazilian Portuguese, Romanian, Swedish, Turkish, Chinese).
They were trained with the Word2Vec algorithm, in its skip-gram version, on PARSEME raw corpora automatically annotated for morpho-syntax (http://hdl.handle.net/11234/1-3367).
These corpora were annotated by Seen2Seen, a rule-based VMWE identifier, one of the leading tools of the PARSEME shared task version 1.2.
VMWE tokens were merged into single tokens.
The format of the vector space files is that of the original Word2Vec implementation by Mikolov et al. (2013), i.e. a binary format.
For compression, bzip2 was used.
NER models for NameTag 2, named entity recognition tool, for English, German, Dutch, Spanish and Czech. Model documentation including performance can be found here: https://ufal.mff.cuni.cz/nametag/2/models . These models are for NameTag 2, named entity recognition tool, which can be found here: https://ufal.mff.cuni.cz/nametag/2 .
NER models for NameTag 2, named entity recognition tool, for English, German, Dutch, Spanish and Czech. Model documentation including performance can be found here: https://ufal.mff.cuni.cz/nametag/2/models . These models are for NameTag 2, named entity recognition tool, which can be found here: https://ufal.mff.cuni.cz/nametag/2 .
This is a trained model for the supervised machine learning tool NameTag 3 (https://ufal.mff.cuni.cz/nametag/3/), trained jointly on several NE corpora: English CoNLL-2003, German CoNLL-2003, Dutch CoNLL-2002, Spanish CoNLL-2002, Ukrainian Lang-uk, and Czech CNEC 2.0, all harmonized to flat NEs with 4 labels PER, ORG, LOC, and MISC. NameTag 3 is an open-source tool for both flat and nested named entity recognition (NER). NameTag 3 identifies proper names in text and classifies them into a set of predefined categories, such as names of persons, locations, organizations, etc. The model documentation can be found at https://ufal.mff.cuni.cz/nametag/3/models#multilingual-conll.
The NottDeuYTSch corpus contains over 33 million words taken from approximately 3 million YouTube comments from videos published between 2008 to 2018 targeted at a young, German-speaking demographic and represents an authentic language snapshot of young German speakers. The corpus was proportionally sampled based on video category and year from a database of 112 popular German-speaking YouTube channels in the DACH region for optimal representativeness and balance and contains a considerable amount of associated metadata for each comment that enable further longitudinal cross-sectional analyses.
The NottDeuYTSch corpus contains over 33 million words taken from approximately 3 million YouTube comments from videos published between 2008 to 2018 targeted at a young, German-speaking demographic and represents an authentic language snapshot of young German speakers. The corpus was proportionally sampled based on video category and year from a database of 112 popular German-speaking YouTube channels in the DACH region for optimal representativeness and balance and contains a considerable amount of associated metadata for each comment that enable further longitudinal cross-sectional analyses.