Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m-2 s-1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light [300 µmol(photon) m-2 s-1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m-2 s-1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m-2 s-1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21-32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m-2 s-1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition., H. Li, Q. Zheng, J. Zhang, B. Li, Z. Li., and Obsahuje bibliografii
To explore the cause of difference in photosynthetic performance between different cultivars of crops, leaf net photosynt rate (PN) and photosystem 2 (PS2) photochemical efficiency (Fv/Fm), apparent quantum yield of carbon assimilation (φc), electron transport rate, photophosphorylation activity, etc. were measured in two soybean cultivars, Heinong 42 and Heinong 37. At pod setting and filling, significant differences in PN between them were observed. The former with a higher PN (from 7 to 38 %) had a significantly higher leaf thickness, leaf dry mass/area (LMA), chlorophyll content, soluble protein content, apparent quantum yield of electron transport through PS2 (φe), carboxylation efficiency (CE), and ribulose-1,5-bisphosphate carboxylase (RuBPC) activity. The significantly higher PN of Heinong 42 is mainly due to its higher content and activity of RuBPC. and Hua Jiang, Da-Quan Xu.
Water-withholding for 5 to 7 weeks and subsequent re-watering were made on potted plants of two epiphytic (E) and two terrestrial (T) fern species, which were collected from a seasonal tropical rainforest and had been grown in a screenhouse with 5 % irradiance for 4 months. During the water stress, the two E species completely closed stomata when frond relative water content (RWC) reached about 70 % with fairly constant maximum photochemistry efficiency (Fv/Fm), while the two T species kept partial stomata opening until RWC reached 45 % and reduction in Fv/Fm at the late stage. Also, chlorophyll content as indicated by a spectral reflectance index was gradually reduced in three species. Physiological recovery was completed after 3-d re-watering for the E species, which was more rapid than for the T species. The gas exchange measurements and regression analyses indicated higher photosynthetic water use efficiency in the E species than in the T species. and Q. Zhang ... [et al.].
Water availability is the main factor limiting crop growth and productivity in dry regions. This study was carried out in order to determine the effect of spraying methanol solution on the photosynthetic characteristics of bean plants. The main aim of our experiment was to improve plant performance under stress caused by water shortage. Two factors were involved: water-deficit stress, such as severe stress (25% of field capacity), mild stress (75% of field capacity), and no stress (100% of field capacity), and application of methanol solution spray at four concentrations: control (without spraying), 10, 20, and 30%. Methanol was applied three times at different growth stages (seedling, flowering, and podding stage) in 10-d intervals. The treatment with 20% methanol at the seedling stage resulted in increased net photosynthesis (P N), intercellular CO2 concentration (C i), and decreased transpiration rate (E) under no stress and mild stress conditions. Under severe stress, 10 and 20%-methanol treatments resulted in increased C i, maximal quantum yield of PSII photochemistry, and decreased E. At the flowering stage, methanol treatments resulted in decreased E and increased C i under mild and severe stress. At the podding stage, 10 and 20%-methanol treatments resulted in increased P N, C i, and total chlorophyll content under mild stress. In conclusion, we suggested that foliar application of methanol had a positive role in enhancing photosynthetic performance., N. Armand, H. Amiri, A. Ismaili., and Obsahuje seznam literatury
We studied the relationships between the degree of photoautotrophy, photosynthetic capacity, and extent of photoinhibition of Gardenia jasminoides Ellis plantlets in vitro. Two successive micropropagation stages (shoot multiplication and root induction), and three culture conditions [tube cap closure, photosynthetic photon flux density (PPFD), and sucrose concentration] which may influence the development of photoautotrophy in vitro were assayed. The ratios of variable chlorophyll fluorescence to either maximal (Fv/Fm) or ground (Fv/F0) values were low, irrespective of the culture stage or growing conditions. Incomplete development of the photosynthetic apparatus and permanent photoinhibition may be involved. However, Fv/Fm and Fv/F0 increased from shoot multiplication to root induction owing to a decrease in F0 and an increase in Fm. This suggests that photoinhibition decreases later during micropropagation, when the photoautotrophy of plantlets is more advanced. The low sucrose content and high PPFD increased the photoinhibition of plantlets, whereas growth in tubes with permeable caps showed the opposite effect. The only culture factor with a significant (positive) effect on maximum photosynthetic rate (Pmax) was PPFD. At shoot multiplication net photosynthetic rate (PN) was positively correlated with the half time of the increase from F0 to Fm (t1/2). Such association may be mainly due to a common response of both traits to higher PPFD in culture. Within each culture stage, no relationship was observed between PN and the degree of photoautotrophy, which was positively correlated with Fv/Fm and Fv/F0 during root induction. During shoot multiplication, these correlations were not significant, or were even negative. Hence during the last stage of micropropagation, plantlets with a higher degree of photoautotrophy are less photoinhibited, whereas they do not follow this pattern at the earlier stage. and M. D. Serret ... [et al.].
Of the four tested sweet potato cultivars having different features in growth and yield, cv. Koganesengan (KOG) was sustainable in photosynthetic activity through young to aged leaves under drought. One of the causes for this phenomenon may be stomatal conductance (g s) of this cultivar that was relatively high in both aged and drought-imposed leaves. In these leaves the non-photochemical quenching (NPQ) was low and the quantum yield of photosystem 2 (Φe) was high, compared to those of the other cultivars. This helps to prevent excessive accumulation of chemical energy in leaves and a decrease in photoinhibition damage to the photosynthetic function, by which KOG sustains a relatively high photosynthetic activity under the drought and alleviates functional deterioration caused by leaf age. and Haimeirong, F. Kubota.
The photosynthesis was investigated 30 d after Pb treatment in Myrica rubra seedlings. The Pb treatment resulted in significantly increased Pb concentrations in shoots. Low Pb concentration exposure (≤2 mM) reduced the net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) without affecting the intercellular CO2 concentration (Ci), chlorophyll (Chl) content, and Chl fluorescence parameters. At 10 d after severe Pb treatment (≥4 mM), PN was inhibited and accompanied by Chl damage, while at 30 d, the inhibition of PN was followed by an increase of Ci and a decrease of gs, E, Chl content, and Chl fluorescence parameters. M. rubra showed a promising prospect for use in the soil phytoremediation, when Pb concentration is low, but the remediation efficiency of M. rubra is limited if Pb exceeds 2 mM., B. He, M. Gu, X. Wang, X. He., and Obsahuje bibliografii
As a common tree species in northern China, Populus × euramericana "Neva" has an important practical value for the study of continuous cropping obstacles in poplar cultivation. Plant allelopathy is the main reason for continuous cropping obstacles, which are caused by allelochemicals, such as para-hydroxybenzoic acid (p-HB). The objective of this study was to investigate the effects of p-HB on the photosynthesis of poplar. Photosynthetic parameters of Populus × euramericana "Neva" poplar were determined in a pot culture experiment where five p-HB concentrations were used (0, 1, 2, 4, and 6 mmol L−1). Each seedling was treated with 4 L of p-HB solution every seven days, ten times in total. p-HB inhibited the photosynthesis of poplar significantly, as shown by a clear decline in the net photosynthetic rate. Our results indicated nonstomatal limitation responsible for the photosynthesis reduction., G. T. Liang, S. Y. Zhang, J. Guo, R. Yang, H. Li, X. C. Fang, G. C. Zhang., and Obsahuje bibliografii
Populus x euramericana cv. ‘Neva’ is an important tree species in northern China. In the study, we used its potted oneyear- old seedlings as experimental material and established three treatments (CK, 0.5X, and 1.0X) according to the concentrations of phenolic acids in order to examine the effects of different concentrations on the photosynthetic characteristics and growth of poplar. With increasing concentrations of phenolic acids, the net photosynthetic rate, stomatal limitation, transpiration rate, apparent quantum yield, photochemical quenching coefficient, electron transport rate, chlorophyll content, and total biomass decreased significantly. The intercellular CO2 concentration, light-compensation point, nonphotochemical quenching, malondialdehyde content, and root/shoot ratio increased significantly. Peroxidase and superoxide dismutase activities initially decreased and then increased. We concluded that phenolic acids significantly inhibited poplar’s photosynthesis and the higher phenolic acid concentration, the greater inhibition of photosynthesis occurred. This inhibition effect was mainly caused by nonstomatal factors. Phenolic acids induced noticeable photoinhibition, resulted in the irreversible damage of membrane structure, and then changed intracellular metabolic processes. To cope with phenolic acid stress, poplar seedlings increased dissipation of excess light energy and distributed relatively more biomass to underground parts within carbon allocation., D. F. Xie, G. C. Zhang, X. X. Xia, Y. Lang, S. Y. Zhang., and Obsahuje bibliografii
The response of selected photosynthetic and morphological parameters of plants to drought was examined in 5 inbred lines of maize (Zea mays L.) and their 10 F1 hybrids. The aim of the study was to establish whether the photosynthetic performance of parental genotypes under drought conditions correlates with the performance of their progeny and whether the net photosynthetic rate, the chlorophyll fluorescence parameters or the content of photosynthetic pigments could be used as reliable physiological markers for early breeding generations. The relative importance of the additive and the nonadditive (dominance, maternal) genetic effects in the inheritance of these parameters was also assessed by means of the quantitative genetics analysis. The results showed that the nonadditive genetic effects associated with a particular combination of genotypes or a particular direction of crossing are at least equally and often even more important as the additivity and that these genetic effects almost totally change with the exposure of plants to drought conditions. This was reflected in the inability to predict the response of F1 hybrids to drought on the basis of the photosynthetic performance of their parents, which indicates that the practical usability of such parameters in maize breeding programs is rather limited. and D. Holá ... [et al.].