Drought stress is one of the main environmental factors limiting plant growth and productivity of many crops. Elevated carbon dioxide concentration (eCO2) can ameliorate, mitigate, or compensate for the negative impact of drought on plant growth and enable plants to remain turgid and functional for a longer period. In order to investigate the combined effects of eCO2 and drought stress on photosynthetic performance and leaf structures, we analyzed photosynthetic characteristics and structure and ultrastructure of cucumber leaves. The decline in net photosynthetic rate under moderate drought stress occurred due to stomatal limitation alone, while under severe drought stress, it was the result of stomatal and nonstomatal limitations. Conversely, eCO2 improved photosynthetic performance under moderate drought stress, increased the lengths of the palisade cells and the number of chloroplasts per palisade cell under severe drought stress, and significantly increased the grana thickness under moderate drought stress. Additionally, eCO2 significantly decreased stomatal density, stomatal widths and stomatal aperture on the abaxial surface of leaves under moderate drought stress. In conclusion, eCO2 can alleviate the negative effects of drought stress by improving the drought resistance of cucumber seedlings through stomatal modifications and leaf structure., B. B. Liu, M. Li, Q. M. Li, Q. Q. Cui, W. D. Zhang, X. Z. Ai, H. G. Bi., and Obsahuje bibliografii
The combined effects of UV-B irradiation and foliar treatment with selenium on two buckwheat species, common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat, that underwent different intensity of breeding, were examined. Plants grown outdoors under three levels of UV-B radiation were studied for 9 weeks, from sowing to ripening. At week 7 they were sprayed with solution containing 1 g(Se) m-3 that presumably mitigates UV-B stress. Morphological, physiological, and biochemical parameters of the plants were monitored. Elevated UV-B radiation, corresponding to a 17 % reduction of the ozone layer, induced synthesis of UV absorbing compounds. In both buckwheat species it also caused a reduction in amounts of chlorophyll a during the time of intensive growth, an effect, which was increased in tartary buckwheat in the presence of selenium. The respiratory potential, measured as terminal electron transport system activity, was lower in plants subjected to enhanced UV-B radiation during the time of intensive growth. The effective quantum yield of photosystem 2 was also reduced due to UV-B radiation in both buckwheat species and was mitigated by the addition of Se. Se treatment also mitigated the stunting effect of UV-B radiation and the lowering of biomass in common buckwheat. and B. Breznik ... [et al.].
The state of some parameters of photosynthetic activity in Norway spruce (Picea abies [L.] Karst.) seedlings during the first autumn temperature transition to frost was monitored in October 1991. The trees were grown under field conditions of the Beskydy Mts. (North Moravia, The Czech Republic). Simultaneous measurements of Chi a fluorescence and C02 gas exchange revealed two phases in the functional transition of the assimilatory apparatus. Immediately upon the temperature transition to frost a distinct decrease in the radiant energy saturated rate of C02 uptake was observed and radiationless dissipation was indicated by higher values of the nonphotochemical quenching coefficient. The second period of the transition, a period with prolonged influence of frost together with a higher level of irradiance, was connected with a decrease of photosynthetic efficiency. The overwhelming capacity for protective non-photochemical energy dissipation and the complete reduction of acceptor QA occurred especially at medium and high incident irradiance documenting photoinhibitory damage to the photosynthetic apparatus.
Geitlerinema amphibium (BA-13), mat-forming cyanobacterium from the southern Baltic Sea, was grown at three irradiances [5, 65, and 125 μmol(photon) m-2 s-1] and three temperatures (15, 22.5, and 30°C). To determine the effect of the investigated factors and their interaction on culture concentration, pigment content, and photosynthetic parameters of cyanobacterium, factorial experiments and two-way analysis of variance (ANOVA) were carried out. Both chlorophyll (Chl) a and phycobilins (PB) were influenced by the irradiance and temperature, but stronger effect was noted in the case of the former one. Chl a and PB concentration per 100 μm of filament dropped above 4-fold with the increasing irradiance. The ratios between individual carotenoids [β-carotene, zeaxanthin, and myxoxanthophyll (Myx)] and Chl a increased significantly with an increase in the irradiance. The greatest fluctuations were observed in the ratio of Myx to Chl a (above 10-fold). Thus, Myx was suggested as the main photoprotective carotenoid in G. amphibium. Based on photosynthetic light response (PI) curves, two mechanisms of photoacclimation in G. amphibium were recognized: a change of photosynthetic units (PSU) number and a change of PSU size. These two mechanisms constituted the base of significant changes in photosynthetic rate and its parameters, such as the compensation point (PC), the initial slope of photosynthetic curve (α), saturation irradiance (EK), maximal photosynthetic rate (Pmax), and dark respiration rate (RD). The greatest changes were observed in PC values (about 15-fold within the range of the factors tested). Studied parameters showed a wide range of changes, which might indicate G. amphibium ability to acclimatize well to irradiance and temperature, and indirectly might explain the successful growth of cyanobacterium in dynamically changing environmental conditions., S. Jodłowska, A. Latała., and Obsahuje bibliografii
The chilling and light stresses were experimentally created to explore photosynthesis of Fraxinus mandshurica seedlings in northeast China. Net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly with the decline of temperature and light. Significant interaction effects of light and chilling were observed on gas exchange of photosynthesis. The minimal fluorescence yield of the dark-adapted state (F0) increased with increasing light and decreasing temperature. Both high and low light stresses induced the decreases of the maximal quantum yield of PSII photochemistry (Fv/Fm), photochemical quenching coefficient (qP), nonphotochemical quenching (NPQ), and electron transport rate. Decline of Fv/Fm and increased F0 were observed under decreasing temperatures. Decreased NPQ and qP at frost temperature suggest that F. mandschurica failed to dissipate excess light energy. No interactive effects of chilling and light on chlorophyll fluorescence parameters suggests that F. mandschurica seedlings might be adapted to combined stresses of light and chilling., X. F. Li, L. Jin, C. Y. Zhu, Y. J. Wen, Y. Wang., and Obsahuje bibliografii
Photoprotective pigments, like those involved in the xanthophyll cycle, help plants avoid oxidative damage caused by excess radiation. This study aims to characterize a spectrum of strategies used to cope with light stress by a diverse group of prairie plants at Cedar Creek Ecosystem Science Reserve (East Bethel, MN). We find that concentrations of photosynthetic and photoprotective pigments are highly correlated with one another and with other physiological traits across species and over time, and tend to be phylogenetically conserved. During a period of water limitation, plots dominated by species with constitutively low pigment concentrations showed a greater decline in mean reflectance and photochemical reflectance index, a reflectance-based indicator of photoprotective physiology, possibly due to alterations in canopy structure. Our findings suggest two contrasting strategies for withstanding light stress: (1) Using photoprotective pigments to dissipate excess energy, and (2) altering canopy structure to minimize absorbance of excess radiation., S. Kothari, J. Cavender-Bares, K. Bitan, A. S. Verhoeven, R. Wang, R. A. Montgomery, J. A. Gamon., and Obsahuje bibliografické odkazy
The impact of drought stress (DS) on eight Eurasian and North African genotypes of wild barley (Hordeum spontaneum) was evaluated by analysis of chlorophyll (Chl) a fluorescence fast induction curves using the JIP-test. Three-week-old, pot-grown plants were exposed to a DS treatment by withholding water for nine days. The genotype-specific impairment of the functionality of the photosynthetic electron transport chain was quantified using the relative decline of the performance indices (PIabs and PItot), two key parameters of the JIP-test. The genotypes showing the highest (HOR10164) and lowest (HOR10710) relative PIs under DS were subjected to additional experiments, including measurements of leaf gas exchange, water status, pigment content, key enzyme activity, and protein abundance. The genotypes showed a specific profile of DS-mediated inhibition of photosynthesis, associated with higher relative leaf water contents in HOR10164 at the end of the treatment. Whereas decreased photosynthetic rate in HOR10164 was mainly caused by stomatal closure, nonstomatal limitations (decreased Rubisco content and activity) were detected in HOR10710. Additional genotype specific features were the upregulation of the NADP-malate dehydrogenase in HOR10164 and a decreased fraction of QA-reducing reaction centers in HOR10710., C. Jedmowski, S. Bayramov, W. Brüggemann., and Obsahuje bibliografii
Under optimal conditions, most of the light energy is used to drive electron transport. However, when the light energy exceeds the capacity of photosynthesis, the overall photosynthetic efficiency drops down. The present study investigated the effects of high light on rice photooxidation-prone mutant 812HS, characterized by a mutation of leaf photooxidation 1 gene, and its wild type 812S under field conditions. Our results showed no significant difference between 812HS and 812S before exposure to high sunlight. However, during exposure to high light, shoot tips of 812HS turned yellow and their chlorophyll (Chl) content decreased. Transmission electron microscopy showed that photooxidation resulted in significant damage of chloroplast ultrastructure. It was confirmed also by inhibited photophosphorylation and reduced ATP content. The decreased coupling factor of ATP, Ca2+-ATPase and Mg2+-ATPase activities also verified these results. Further, significantly enhanced activities of antioxidative enzymes were observed during photooxidation. Malondialdehyde, hydrogen peroxide, and the superoxide generation rates also increased. Chl a fluorescence analysis found that the performance index and maximum quantum yield of PSII declined on August 4, 20 days after high-light treatment. Net photosynthetic rate also decreased and substomatal CO2 concentration increased in 812HS at the same time. In conclusion, our findings indicated that excessive energy triggered the production of toxic reactive oxygen species and promoted lipid peroxidation in 812HS plants, causing severe damage to cell membranes, degradation of photosynthetic pigments and proteins, and ultimately inhibition of photosynthesis., J. Ma, C. F. Lv, B. B. Zhang, F. Wang, W. J. Shen, G. X. Chen, Z. P. Gao, C. G. Lv., and Obsahuje seznam literatury
The relationships between drought response and anatomical/physiological properties were assessed in two poplar clones belonging to the Aigeros section: Populusxeuramericana clone Dorskamp (drought-tolerant) and clone Luisa Avanzo (drought-sensitive). Cuttings of both clones were exposed for 12 h to 0 mM (control). 50 mM (osmotic potential -0.112 MPa), and 150 mM (-0.336 MPa) mannitol. In control, Dorskamp had smaller stomata than Luisa Avanzo, one or two layers of palisade cells, a spongy mesophyll, and high concentrations of antioxidative compounds (ascorbate, glutathione). After exposure to 50 or 150 mM mannitol, both clones closed their stomata: leaf conductance and opening of stomata decreased. When exposed to 50 mM mannitol, net photosynthetic rate (PN) and chlorophyll (Chl) and total solute contents remained stable; ribulose-1,5-bisphosphate carboxylase/-oxygenase activity, Chl synthesis and turn-over, ascorbate peroxidase and glutathione reductase activities were less affected in Dorskamp than in Luisa Avanzo. Following an exposure to 150 mM mannitol, Dorskamp exhibited higher PN and higher contents of antioxidants (ascorbate, glutathione) and antioxidative enzymes (ascorbate peroxidase, glutathione reductase) than Luisa Avanzo. Hence the drought-tolerant poplar was able to better avoid and tolerate osmotic stress. and M. Courtois, E. Boudouresque, G. Guerrier.
Pendulum walnut leaves exhibited various adaptive responses related to the regulation of photon interception such as specific downward orientation, greater leaf area, and larger pigment pool. Changes in the regulation of PS2 such as higher thermal dissipation (NPQ) and lower quantum efficiency (ΦPS2) that protect the photosynthetic apparatus against damages were also found. The growth and photosynthetic features of pendulum walnut leaf are interpreted as adaptations that allow the pendulum walnut tree to compensate the impaired ability by appropriate growth to ensure the energy needs for photosynthesis, respectively for biomass formation. and L. Atanasova ... [et al.].