Groundwater flow in surroundings of water structures is frequently noted for singularities in velocity field. These are induced by high gradients of velocity and pressure in closeness of slots and edges in structures. The study does analysis of some hydrodynamic properties of the singularities and warns against its possible incorrect model simulation. and Prúdenie podzemnej vody v okolí hydrotechnických stavieb ako sú potrubia, tunely, nádrže a plavebné komory sa často vyznačuje zvláštnosťami (singularitami) v rýchlostných poliach. Tie sú vyvolávané vysokými gradientami rýchlosti a tlaku v okolí netesností objektov, alebo ich núteným obtekaním. Štúdia analyzuje hydrodynamické vlastnosti týchto singularít a upozorňuje na dôsledky ich prípadne nesprávnej interpretácie.
In arid and semiarid regions where water is the main limiting factor, water redistribution is regarded as an important hydrological process of great ecological value. By providing additional water to certain loci, moist pockets of great productivity are formed, characterized by high plant biomass and biological activity. These moist pockets are often a result of runon. Yet, although runoff may take place on semi-flat undulating surfaces, runoff measurements are thus far confined to slopes, where a sufficient gradient facilitates downslope water harvesting. On undulating surfaces of mounds and depressions, such as in interdunes, no quantification of the amount of water reaching depressions is feasible due to the fact that no reliable method for measuring the runoff amounts in semi-flat terrains is available. The current paper describes specific runoff plots, designed to measure runoff in depressions (sinks). These plots, termed sink plots (SPs), were operative in the Hallamish dunefield (Negev Desert, Israel). The paper presents measurements of runoff yield that were carried out between January 2013 and January 2014 on SPs and compared them to runoff obtained from crusted slope plots and fine-grained (playa) surfaces. The potential hydrological and ecological implications of water redistribution within semi-flat terrains for this and other arid ecosystems are discussed.
Water erosion has been recognized as a major soil degradation process worldwide. This is of special relevance in the semi-arid areas of South Bulgaria with long periods of drought along with severe rainfall events. The main objective of this study was to evaluate the applicability of Bromus innermis L. and Lotus corniculatus L. for soil protection purposes under different site conditions. The site parameters considered were slope, fertilization and a range of soil physical parameters. The plant parameters were canopy cover, biomass, and root morphological characteristics. The experiment includes plots without and with eleven rates of NPK fertilization on gentle (6o ) and steep slopes (12o ). It was observed that the effect of fertilization on shoot and root growth was stronger on the gentle than on the steep slopes. The biomass accumulation was more sensitive to N than the PK fertilizer applications. The increase of the root density with increasing fertilization rates was more pronounced for the mass than for length or surface area. A significant effect on root diameter was found only for the variants with the highest N application. Treatments with the highest root mass density on both slopes showed the greatest potential for reducing erosion.
Trained models for UDPipe used to produce our final submission to the Vardial 2017 CLP shared task (https://bitbucket.org/hy-crossNLP/vardial2017). The SK model was trained on CS data, the HR model on SL data, and the SV model on a concatenation of DA and NO data. The scripts and commands used to create the models are part of separate submission (http://hdl.handle.net/11234/1-1970).
The models were trained with UDPipe version 3e65d69 from 3rd Jan 2017, obtained from
https://github.com/ufal/udpipe -- their functionality with newer or older versions of UDPipe is not guaranteed.
We list here the Bash command sequences that can be used to reproduce our results submitted to VarDial 2017. The input files must be in CoNLLU format. The models only use the form, UPOS, and Universal Features fields (SK only uses the form). You must have UDPipe installed. The feats2FEAT.py script, which prunes the universal features, is bundled with this submission.
SK -- tag and parse with the model:
udpipe --tag --parse sk-translex.v2.norm.feats07.w2v.trainonpred.udpipe sk-ud-predPoS-test.conllu
A slightly better after-deadline model (sk-translex.v2.norm.Case-feats07.w2v.trainonpred.udpipe), which we mention in the accompanying paper, is also included. It is applied in the same way (udpipe --tag --parse sk-translex.v2.norm.Case-feats07.w2v.trainonpred.udpipe sk-ud-predPoS-test.conllu).
HR -- prune the Features to keep only Case and parse with the model:
python3 feats2FEAT.py Case < hr-ud-predPoS-test.conllu | udpipe --parse hr-translex.v2.norm.Case.w2v.trainonpred.udpipe
NO -- put the UPOS annotation aside, tag Features with the model, merge with the left-aside UPOS annotation, and parse with the model (this hassle is because UDPipe cannot be told to keep UPOS and only change Features):
cut -f1-4 no-ud-predPoS-test.conllu > tmp
udpipe --tag no-translex.v2.norm.tgttagupos.srctagfeats.Case.w2v.udpipe no-ud-predPoS-test.conllu | cut -f5- | paste tmp - | sed 's/^\t$//' | udpipe --parse no-translex.v2.norm.tgttagupos.srctagfeats.Case.w2v.udpipe
Slovak models for MorphoDiTa, providing morphological analysis, morphological generation and part-of-speech tagging.
The morphological dictionary is created from MorfFlex SK 170914 and the PoS tagger is trained on automatically translated Prague Dependency Treebank 3.0 (PDT).
V tomto příspěvku se budeme zabývat úlohami fyzikální olympiády zaměřenými na sluneční záření dopadající na povrch Země, které lze považovat za součást kosmického záření. Úloh s touto tematikou nalezneme ve fyzikální olympiádě na různých úrovních celou řadu, my zde představíme dvě teoretické úlohy. První z nich byla zadána na 46. mezinárodní fyzikální olympiádě (MFO) v Indii v roce 2015. I druhá úloha je ze 46. ročníku, ale tentokrát slovenské fyzikální olympiády. Tento ročník proběhl již ve školním roce 2004/05. and Filip Studnička, Ľubomír Konrád, Jan Kříž, Bohumil Vybíral.
This paper concerns the topic of slur reclamation. I start with presenting two seemingly opposing accounts of slur reclamation, Jeshion’s (2020) Polysemy view and Bianchi’s (2014) Echoic view. Then, using the data provided by linguists, I discuss the histories of the reclamation of the slur ‘queer’ and of the n-word, which brings me to presenting a view of reclamation that combines the Polysemy view and Echoic view. The Combined view of slur reclamation proposed in this paper postulates meaning change while fleshing out the pragmatic mechanisms necessary for it to occur.
Research of the last years pointed out that most soils are neither completely hydrophilic nor hydrophobic, but exhibit a subcritical level of water repellency (i.e. contact angle, CA > 0° and < 90°). Soil water repellency (SWR) is mainly caused by organic compounds of different origin and structure, showing the relevance of biofilms and organic coatings present at many particle surfaces. Despite the importance of SWR for hydraulic processes like preferential flow phenomena, generation of heterogeneous moisture patterns, or surface run-off generation, detailed investigations on the spatial variability of SWR at various scales have rarely been carried out. We introduce a new and easy-to-apply operation for measuring the spatial distribution of SWR using a modified sessile drop method for direct optical assessment of CA at a small scale. The specific objectives of this paper are to apply a sampling and preparation technique that preserves the original spatial arrangement of soil particles and to characterize soil wettability in terms of CA at a high spatial resolution. Results revealed that the sampling and preparation technique allows determination of CA at the millimeter scale using droplets of 1 µL volume. Direct measurement on grain surfaces of the sand fraction is possible for grain sizes > 300 µm using drop volumes down to 0.1 µL. Geostatistical evaluation showed that the measurement grid scale is below the range of spatial dependency for droplets of 1 µL volume, but not for measurements on single grains (pure nugget effect). Results show further that the small-scale differences in wettability, especially for CA < 90°, cannot be detected by the conventional WDPT test. From these findings it can be concluded that the proposed technique allows the identification of small-scale variations in wettability that may promote the formation of heterogeneous flow fields and moisture patterns in soil under unsaturated conditions.