The effects of blocking ventromedial hypothalamic nucleus (VMH) muscarinic cholinoceptors on cardiovascular responses were investigated in running rats. Animals were anesthetized with pentobarbital sodium and fitted with bilateral cannulae into the VMH. After recovering from surgery, the rats were familiarized to running on a treadmill. The animals then had a polyethylene catheter implanted into the left carotid artery to measure blood pressure. Tail skin temperature (Ttail), heart rate, and systolic, diastolic and mean arterial pressure were measured after bilateral injections of 0.2 μl of 5 × 10−9 mol methylatropine or 0.15 M NaCl solution into the hypothalamus. Cholinergic blockade of the VMH reduced time to fatigue by 31% and modified the temporal profile of cardiovascular and Ttail adjustments without altering their maximal responses. Mean arterial pressure peak was achieved earlier in methylatropine-treated rats, which also showed a 2-min delay in induction of tail skin vasodilation, suggesting a higher sympathetic tonus to peripheral vessels. In conclusion, muscarinic cholinoceptors within the VMH are involved in a neuronal pathway that controls exercise-induced cardiovascular adjustments. Furthermore, blocking of cholinergic transmission increases sympathetic outflow during the initial minutes of exercise, and this higher sympathetic activity may be responsible for the decreased performance., S. P. Wanner ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The paper presents the results of our effort to reveal objective parameters for evaluation of the spa treatment for patients with anxiety-depressive disorders. The study was based on our previous experience with neuroactive steroids and neurosteroids, which play a crucial role in the psychological well-being of patients by maintaining balance of the organism. A total number of 94 steroids were determinated in a group of 70 female patients diagnosed with anxiety-depressive disorders. Patients underwent a month spa treatment while maintaining unchanged medication dosing with SSRI (selective serotonin reuptake inhibitors). The other investigated factors contributing to improving the health of treated subjects were amino-acid homocysteine and serotonin. The blood samples were collected at the beginning and the end of the spa treatment. Serotonin in all patients increased by a relative 23 % (results given as relative differences in percent), while homocysteine decreased by 17.1 %. Statistically significant increases were found in 21 steroids, which indicate activation of the adrenal cortex. It can be assumed, that the overall improvement in the mental condition of patients, which was proved by questionnaire from Knobloch and Hausner, the increase in immune suppressive substances and anti-autoimmune responses, will maintain for a longer time after the spa treatment., M. Bicikova, L. Macova, L. Kolatorova, M. Hill, J. Novotny, D. Jandova, L. Starka., and Obsahuje bibliografii
Whole-body vibration (WBV) is a new exercise method, with good acceptance among sedentary subjects. The metabolic response to WBV has not been well documented. Three groups of male subjects, inactive (SED), endurance (END) and strength trained (SPRINT) underwent a session of side-alternating WBV composed of three 3-min exercises (isometric half-squat, dynamic squat, dynamic squat with added load), and repeated at three frequencies (20, 26 and 32 Hz). VO2, heart rate and Borg scale were monitored. Twenty-seven healthy young subjects (10 SED, 8 SPRINT and 9 END) were included. When expressed in % of their maximal value recorded in a treadmill test, both the peak oxygen consumption (VO2) and heart rate (HR) attained during WBV were greatest in the SED, compared to the other two groups (VO2: 59.3 % in SED vs 50.8 % in SPRINT and 48.0 % in END, p<0.01; HR 82.7 % in SED vs 80.4 % in SPRINT and 72.4 % in END, p<0.05). In conclusions, the heart rate and metabolic response to WBV differs according to fitness level and type, exercise type and vibration frequency. In SED, WBV can elicit sufficient cardiovascular response to benefit overall fitness and thus be a potentially useful modality for the reduction of cardiovascular risk., B. Gojanovic, F. Feihl, G. Gremion, B. Waeber., and Obsahuje bibliografii
Fibroblast growth factor (FGF) signaling plays an important role during embryonic induction and patterning, as well as in modulating proliferative and hypertrophic growth in fetal and adult organs. Hemodynamically induced stretching is a powerful physiological stimulus for embryonic myocyte proliferation. The aim of this study was to assess the effect of FGF2 signaling on growth and vascularization of chick embryonic ventricular wall and its involvement in transmission of mechanical stretchinduced signaling to myocyte growth in vivo . Myocyte proliferation was significantly higher at the 48 h sampling interval in pressure-overloaded hearts. Neither Western blotting, nor immunohistochemistry performed on serial paraffin sections revealed any changes in the amount of myocardial FGF2 at that time point. ELISA showed a significant increase of FGF2 in the serum. Increased amount of FGF2 mRNA in the heart was confirmed by real time PCR. Blocking of FGF signaling by SU5402 led to decreased myocyte proliferation, hemorrhages in the areas of developing vasculature in epicardium and digit tips. FGF2 synthesis is increased in embryonic ventricular cardiomyocytes in response to increased stretch due to pressure overload. Inhibition of FGF signaling impacts also vasculogenesis, pointing to partial functional redundancy in paracrine control of cell proliferation in the developing heart., E. Krejci, Z. Pesevski, O. Nanka, D. Sedmera., and Obsahuje bibliografii
Nitric oxide (NO) is an important endogenous neurotransmitter and mediator. It participates in regulation of physiological processes in different organ systems including airways. Therefore, it is important to clarify its role in the regulation of both airway and vascular smooth muscle, neurotransmission and neurotoxicity, mucus transport, lung development and in the surfactant production. The bioactivity of NO is highly variable and depends on many factors: the presence and activity of NO-producing enzymes, activity of competitive enzymes (e.g. arginase), the amount of substrate for the NO production, the presence of reactive oxygen species and others. All of these can change NO primary physiological role into potentially harmful. The borderline between them is very fragile and in many cases not entirely clear. For this reason, the research focuses on a comprehensive understanding of NO synthesis and its metabolic pathways, genetic polymorphisms of NO synthesizing enzymes and related effects. Research is also motivated by frequent use of exhaled NO monitoring in the clinical manifestations of respiratory diseases. The review focuses on the latest knowledge about the production and function of this mediator and understanding the basic physiological processes in the airways., M. Antosova, D. Mokra, L. Pepucha, J. Plevkova, T. Buday, M. Sterusky, A. Bencova., and Obsahuje bibliografii
The microflora of the digestive tract is composed of a unique set of bacteria, yeasts, viruses and other microorganisms, generally known as the microbiome. The microbiome exhibits considerable inter-individual variability, with up to two-thirds of the microflora differing between individuals. Because of this, the variable intestinal microflora is responsible for many differences in metabolic, hormonal and immunological processes in humans and animals. Significant differences have been observed in the metabolism of phytoestrogens, naturally occurring substances that possess estrogenic or anti-estrogenic activity. These substances occur predominately in legumes, especially in soy and many soy products. Because of their effects, phytoestrogens are used as an alternative therapy for menopausal disorders and benign prostate hyperplasia. In connection with the worldwide expansion of soy products as part of healthy lifestyles including vegetarianism and veganism, phytoestrogens have become a regular part of everyday life. The activity of phytoestrogens is strongly dependent on the microbiome. Their metabolites have stronger estrogenic activity than the natural substances themselves, and because of the variability in microbiomes, there are large differences in the effects of phytoestrogens among individuals., L. Kolátorová, O. Lapčík, L. Stárka., and Obsahuje bibliografii
Early recognition of collapsing hemodynamics in pulmonary embolism is necessary to avoid cardiac arrest using aggressive medical therapy or mechanical cardiac support. The aim of the study was to identify the maximal acute hemodynamic compensatory steady state. Overall, 40 dynamic obstructions of pulmonary artery were performe d and hemodynamic data were collected. Occlusion of only left or right pulmonary artery did not lead to the hemodynamic collapse. When gradually obstructing the bifurcation, the right ventri cle end-diastolic area expanded proportionally to pulmonary artery mean pressure from 11.6 (10.1, 14.1) to 17.8 (16.1, 18.8) cm 2 (p<0.0001) and pulmonary artery mean pressure increased from 22 (20, 24) to 44 (41, 47) mmHg (p<0.0001) at the poin t of maximal hemodynamic compensatory steady state. Sim ilarly, mean arte rial pressure decreased from 96 (87, 101) to 60 (53, 78) mmHg (p<0.0001), central venous pressure increased from 4 (4, 5) to 7 (6, 8) mmHg (p<0.0001), heart rate increased from 92 (88, 97) to 147 (122, 165) /min (p<0.0001), contin uous cardiac output dropped from 5.2 (4.7, 5.8) to 4.3 (3.7, 5.0) l/min (p=0.0023), modified shock index increased from 0.99 (0.81, 1.10) to 2.31 (1.99, 2.72), p<0.0001. In conclusion, in stead of continuous cardiac output all of the analyzed parameters can sensitively determine the individual maximal compensatory response to obstructive shock. We assume their monitoring can be used to predict the critical phase of the hemodynamic status in routine practice., J. Kudlička ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Spatial navigation comprises a widely-studied complex of animal behaviors. Its study offers many methodological advantages over other approaches, enabling assessment of a variety of experimental questions and the possibility to compare the results across different species. Spatial navigation in laboratory animals is often considered a model of higher human cognitive functions including declarative memory. Almost fifteen years ago, a novel dry-arena task for rodents was designed in our laboratory, originally named the place avoidance task, and later a modification of this approach was established and called active place avoidance task. It employs a continuously rotating arena, upon which animals are trained to avoid a stable sector defined according to room-frame coordina tes. This review describes the development of the place avoidance tasks, evaluates the cognitive processes associated with performance and explores the application of place avoidance in the testing of spatial learning after neuropharmacological, lesion and other experimental manipulations., A. Stuchlík ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Clusterin is a heterodimeric glycoprotein with wide range of functions. To further explore its possible regulatory role in energy homeostasis and in adipose tissue, we measured plasma clusterin and its mRNA expression in subcutaneous adipose tissue (SCAT) of 15 healthy lean women, 15 obese women (OB) and 15 obese women with type 2 diabetes mellitus (T2DM) who underwent a 2-week very low-calorie diet (VLCD), 10 obese women without T2DM who underwent laparoscopic sleeve gastrectomy (LSG) and 8 patients with T2DM, 8 patients with impaired glucose tolerance (IGT) and 8 normoglycemic patients who underwent hyperinsulinemic euglycemic clamp (HEC). VLCD decreased plasma clusterin in OB but not in T2DM patients while LSG and HEC had no effect. Clusterin mRNA expression in SCAT at baseline was increased in OB and T2DM patients compared with controls. Clusterin mRNA expression decreased 6 months after LSG and remained decreased 12 months after LSG. mRNA expression of clusterin was elevated at the end of HE C compared with baseline only in normoglycemic but not in IGT or T2DM patients. In summary, our data suggest a possible local regulatory role for clusterin in the adipose tissue rather than its systemic involvement in the regulation of energy homeostasis., J. Kloučková, Z. Lacinová, P. Kaválková, P. Trachta, M. Kasalický, D. Haluzíková, M. Mráz, M. Haluzík., and Obsahuje bibliografii
Serum adipocyte fatty acid-binding protein (FABP-4) concentrations are linked to human obesity and other features of metabolic syndrome. Patients with Cushing's syndrome (CS) develop numerous features of metabolic syndrome due to chronic cortisol excess. Here we tested the hypothesis that chronically increased cortisol levels in CS patients may alter circulating levels of FABP-4. Fourteen patients with CS, 19 patients with simple obesity (OB) and 36 healthy control subjects (C) were included in the study. Serum FABP-4 concentrations were significantly higher in both CS and OB patients relati ve to C group, but they did not differ between CS and OB groups. In a combined population of all groups, serum FABP-4 levels correlated positively with BMI, body fat content, serum glucose, triglycerides, HbA1c and HOMA index and were inversely relate d to HDL-cholesterol, resting energy expenditure and freeT3 levels. We conclude that FABP-4 levels are significantly increased in both patients with simple obesity and obese patients with Cushing's syndrome. We suggest that increased FABP-4 concentrations in CS patients are rather due to their excessive fat accumulation and related metabolic abnormalities than due to a direct effect of cortisol on FABP-4 production., V. Ďurovcová, J. Marek, V. Hána, M. Matoulek, V. Zikán, D. Haluzíková, P. Kaválková, Z. Lacinová, M. Kršek, M. Haluzík., and Obsahuje bibliografii