Extremely fast digital audio channelizer implementation, usable as a building block for experimental ASR front-ends or signal denoising applications. Also applicable in software defined radios, due to its high throughput. It comes in a form of a C/C++ library and an executable example program which reads input stream, splitting it into equidistant frequency channels, emitting their data to the output.
Features:
(1) Hand tuned SIMD-aware assembly for x86 (SSE) and IA64 (AVX) as well as for ARM (NEON) processors.
(2) Generic non-SIMD C++ implementation for other architectures.
(3) Capable of taking advantage of multicore CPUs.
(4) Fully configurable number of channels and the output decimation rate.
(5) User supplied FIR of the channel separation filter, which allows to specify the width of the channels, whether they should overlap or be separated.
(6) Input and output signal samples are treated as complex numbers.
(7) Speed over 750 complex MS/s achieved on Core i7 4710HQ @ 2.5GHz, when channelizing into 72 output channels with a FIR length of 1152 samples, using 3 computing threads.
(8) Runs under Linux OS.
NameTag 2 is a named entity recognition tool. It recognizes named entities (e.g., names, locations, etc.) and can recognize both flat and embedded (nested) entities. NameTag 2 can be used either as a commandline tool or by requesting the NameTag webservice.
NameTag webservice can be found at:
https://lindat.mff.cuni.cz/services/nametag/
NameTag commandline tool can be downloaded from NameTag GitHub repository, branch nametag2:
git clone https://github.com/ufal/nametag -b nametag2
Latest models and documentation can be found at:
https://ufal.mff.cuni.cz/nametag/2
This software subject to the terms of the Mozilla Public License, v. 2.0 (http://mozilla.org/MPL/2.0/). The associated models are distributed under CC BY-NC-SA license.
Please cite as:
Jana Straková, Milan Straka, Jan Hajič (2019): Neural Architectures for Nested NER through Linearization. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5326-5331, Association for Computational Linguistics, Stroudsburg, PA, USA, ISBN 978-1-950737-48-2 (https://aclweb.org/anthology/papers/P/P19/P19-1527/)
Parsito is a fast open-source dependency parser written in C++. Parsito is based on greedy transition-based parsing, it has very high accuracy and achieves a throughput of 30K words per second. Parsito can be trained on any input data without feature engineering, because it utilizes artificial neural network classifier. Trained models for all treebanks from Universal Dependencies project are available (37 treebanks as of Dec 2015).
Parsito is a free software under Mozilla Public License 2.0 (http://www.mozilla.org/MPL/2.0/) and the linguistic models are free for non-commercial use and distributed under CC BY-NC-SA (http://creativecommons.org/licenses/by-nc-sa/4.0/) license, although for some models the original data used to create the model may impose additional licensing conditions.
Parsito website http://ufal.mff.cuni.cz/parsito contains download links of both
the released packages and trained models, hosts documentation and offers online
demo.
Parsito development repository http://github.com/ufal/parsito is hosted on
GitHub.
This entry contains the SumeCzech dataset and the metric RougeRAW used for evaluation. Both the dataset and the metric are described in the paper "SumeCzech: Large Czech News-Based Summarization Dataset" by Milan Straka et al.
The dataset is distributed as a set of Python scripts which download the raw HTML pages from CommonCrawl and then process them into the required format.
The MPL 2.0 license applies to the scripts downloading the dataset and to the RougeRAW implementation.
Note: sumeczech-1.0-update-230225.zip is the updated release of the SumeCzech download script, including the original RougeRAW evaluation metric. The download script was modified to use the updated CommonCraw download URL and to support Python 3.10 and Python 3.11. However, the downloaded dataset is still exactly the same. The original archive sumeczech-1.0.zip was renamed to sumeczech-1.0-obsolete-180213.zip and is kept for reference.
UDPipe is an trainable pipeline for tokenization, tagging, lemmatization and dependency parsing of CoNLL-U files. UDPipe is language-agnostic and can be trained given only annotated data in CoNLL-U format. Trained models are provided for nearly all UD treebanks. UDPipe is available as a binary, as a library for C++, Python, Perl, Java, C#, and as a web service.
UDPipe is a free software under Mozilla Public License 2.0 (http://www.mozilla.org/MPL/2.0/) and the linguistic models are free for non-commercial use and distributed under CC BY-NC-SA (http://creativecommons.org/licenses/by-nc-sa/4.0/) license, although for some models the original data used to create the model may impose additional licensing conditions. UDPipe is versioned using Semantic Versioning (http://semver.org/).
UDPipe website http://ufal.mff.cuni.cz/udpipe contains download links of both the released packages and trained models, hosts documentation and offers online demo.
UDPipe development repository http://github.com/ufal/udpipe is hosted on GitHub.