Costra 1.1 is a new dataset for testing geometric properties of sentence embeddings spaces. In particular, it concentrates on examining how well sentence embeddings capture complex phenomena such paraphrases, tense or generalization. The dataset is a direct expansion of Costra 1.0, which was extended with more sentences and sentence comparisons.
This bilingual thesaurus (French-English), developed at Inist-CNRS, covers the concepts from the emerging COVID-19 outbreak which reminds the past SARS coronavirus outbreak and Middle East coronavirus outbreak. This thesaurus is based on the vocabulary used in scientific publications for SARS-CoV-2 and other coronaviruses, like SARS-CoV and MERS-CoV. It provides a support to explore the coronavirus infectious diseases. The thesaurus can be browsed and queried by humans and machines on the Loterre portal (https://www.loterre.fr), via an API and an rdf triplestore. It is also downloadable in PDF, SKOS, csv and json-ld formats. The thesaurus is made available under a CC-by 4.0 license.
This is a document-aligned parallel corpus of English and Czech abstracts of scientific papers published by authors from the Institute of Formal and Applied Linguistics, Charles University in Prague, as reported in the institute's system Biblio. For each publication, the authors are obliged to provide both the original abstract in Czech or English, and its translation into English or Czech, respectively. No filtering was performed, except for removing entries missing the Czech or English abstract, and replacing newline and tabulator characters by spaces.
This is a parallel corpus of Czech and mostly English abstracts of scientific papers and presentations published by authors from the Institute of Formal and Applied Linguistics, Charles University in Prague. For each publication record, the authors are obliged to provide both the original abstract (in Czech or English), and its translation (English or Czech) in the internal Biblio system. The data was filtered for duplicates and missing entries, ensuring that every record is bilingual. Additionally, records of published papers which are indexed by SemanticScholar contain the respective link. The dataset was created from September 2022 image of the Biblio database and is stored in JSONL format, with each line corresponding to one record.
The database contains annotated reflective sentences, which fall into the categories of reflective writing according to Ullmann's (2019) model. The dataset is ready to replicate these categories' prediction using machine learning. Available from: https://anonymous.4open.science/repository/c856595c-dfc2-48d7-aa3d-0ccc2648c4dc/data
The aim of the course is to introduce digital humanities and to describe various aspects of digital content processing.
The course consists of 10 lessons with video material and a PowerPoint presentation with the same content.
Every lesson contains a practical session – either a Jupyter Notebook to work in Python or a text file with a short description of the task. Most of the practical tasks consist of running the programme and analyse the results.
Although the course does not focus on programming, the code can be reused easily in individual projects.
Some experience in running Python code is desirable but not required.
Eyetracked Multi-Modal Translation (EMMT) is a simultaneous eye-tracking, 4-electrode EEG and audio corpus for multi-modal reading and translation scenarios. It contains monocular eye movement recordings, audio data and 4-electrode wearable electroencephalogram (EEG) data of 43 participants while engaged in sight translation supported by an image.
The details about the experiment and the dataset can be found in the README file.
FASpell dataset was developed for the evaluation of spell checking algorithms. It contains a set of pairs of misspelled Persian words and their corresponding corrected forms similar to the ASpell dataset used for English.
The dataset consists of two parts:
a) faspell_main: list of 5050 pairs collected from errors made by elementary school pupils and professional typists.
b) faspell_ocr: list of 800 pairs collected from the output of a Farsi OCR system.
The contribution includes the data frame and the R script (Markdown file) belonging to the paper "Who Benefits from an Imperative? Assessment of Directives on a Benefit-Scale" submitted to the journal Pragmatics on September 2024.
We present a large corpus of Czech parliament plenary sessions. The corpus
consists of approximately 444 hours of speech data and corresponding text
transcriptions. The whole corpus has been segmented to short audio snippets
making it suitable for both training and evaluation of automatic speech
recognition (ASR) systems. The source language of the corpus is Czech, which
makes it a valuable resource for future research as only a few public datasets
are available for the Czech language.