We have evaluated the therapeutic effect of a compound mixture of caprylic acid (200 mg/kg fish), organic iron (0.2% of diet) and mannan oligosaccharide (0.4% of diet) in gilthead sea bream, Sparus aurata Linnaeus, infected with Sparicotyle chrysophrii Beneden et Hesse, 1863 in controlled conditions. One hundred and ten reared and S. chrysophrii-free fish (197 g) located in a cement tank were infected by the parasite two weeks following the addition of 150 S. chrysophrii-infected fish (70 g). Growth parameters and gill parasitic load were measured in treated against control fish after a ten-week-period. Differences in final weight, feed conversion ratio, specific growth rate and feed efficiency were not statistically significant between the experimental groups, suggesting no evident effect with respect to fish growth during the study period. Although the prevalence of S. chrysophrii was not affected by the mixture at the end of the experiment, the number of adults and larvae was significantly lower. The mean intensity encompassing the number of adults and larvae was 8.1 in treated vs 17.7 in control fish. Individual comparisons of gill arches showed that the preferred parasitism site for S. chrysophrii it the outermost or fourth gill arch, consistently apparent in fish fed the modified diet and in control fish. In conclusion, the combined application of caprylic acid, organic iron and mannan oligosaccharide can significantly affect the evolution of infection with S. chrysophrii in gilthead sea bream, being capable of reducing adult and larval stages of the monogenean. However, no difference in growth improvement was observed after the trial period, potentially leaving space for further optimisation of the added dietary compounds., George Rigos, Ivona Mladineo, Chrysa Nikoloudaki, Anamarija Vrbatovic, Dimitra Kogiannou., and Obsahuje bibliografii
The light-induced nonphotochemical quenching (NPQ) can safely dissipate excess of absorbed light to heat. Here we describe an application of spectrally resolved fluorescence induction (SRFI) method for studying spectral variability of NPQ. The approach allows detection of spectrally-resolved nonphotochemical quenching (NPQλ) representing NPQ dependency on fluorescence emission wavelength in the whole spectral range of fluorescence emission. The experimental approach is briefly described and NPQλ is studied for the cryptophyte alga Rhodomonas salina and for green alga Chlorella sp. We confirm presence of NPQλ only in membrane-bound antennae (chlorophyll a/c antennae) and not in phycobiliproteins in lumen in cryptophyte and show that NPQλ is inhibited in the whole spectral range by NPQ inhibitors in Chlorella sp. We discuss variability in the quenching in the particular spectral ranges and applicability of the NPQλ parameter to study quenching locus in vivo., R. Kaňa., and Obsahuje bibliografické odkazy
1_Chestnut (Castanea sativa Mill.) is one of the economically more important trees in the north of Portugal. Spiders, as generalist predators, are potential controlling agents of pests, yet the composition of the community of spiders associated with this crop is only poorly known. The objective of this study was to determine the spider communities in the canopies of chestnut trees subject to three different soil management practices in northeastern Portugal. Three chestnut groves each subject to a different agricultural practice (grazed, tilled or untilled) were studied in 2008 and 2009. The Araneae communities were sampled by beating the branches and the individuals collected were identified to family and species when possible. To investigate the structure of the spider community in each grove the abundance and family richness of spiders were calculated and compared between managements. In total, 4172 spiders were collected and, in both years, the three most abundant families were Araneidae, Philodromidae and Linyphiidae. In 2008, there was a greater abundance of spiders in the grazed, followed by the tilled and untilled groves, but no significant differences among groves. However, in 2009 there was a greater abundance of spiders in the tilled grove, followed by grazed and untilled groves and the differences between the untilled and the other two groves were significant. Araniella, Oxyopes and Anyphaena were the most abundant genera in the three groves. This study showed that soil management may influence the diversity of spiders, but the effects were weak and not consistent between years., 2_The reduction or absence of a suitable habitat for spiders under the trees in the tilled treatment might have resulted in the spiders migrating up into the canopy. However, based on the weak effects on spider abundance recorded and its potentially adverse effects on soils, tillage is not recommended for managing the incidence of pests in chestnut groves., Jacinto Benhadi-Marin ... [et al.]., and Obsahuje seznam literatury
Saline soils spread wildly in the world, therefore it is important to develop salt-tolerant crops. We carried out a pot study in order to determine effects of arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis and Glomus versiforme) in black locust seedlings under salt (NaCl) stress. The results showed that AMF enhanced in seedlings their growth, photosynthetic ability, carbon content, and calorific value. Under salt stress, the biomass of the seedlings with R. irregularis or G. versiforme were greater by 151 and 100%, respectively, while a leaf area increased by 197 and 151%, respectively. The seedlings colonized by R. irregularis exhibited a higher chlorophyll content, net photosynthetic rate, intercellular CO₂ concentration, stomatal conductance, and transpiration rate than that of the nonmycorrhizal seedlings or those colonized by G. versiforme. Both R. irregularis and G. versiforme significantly enhanced a carbon content, calorific value, carbon, and energy accumulations of black locust under conditions of 0 or 1.5 g(NaCl) kg-1(growth substrate). Our results suggested that AMF alleviated salt stress and improved the growth of black locust., X. Q. Zhu, M. Tang, H. Q. Zhang., and Obsahuje bibliografii
In this study, we hypothesized that colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Rhizophagus irregularis could modify the profiles of rhizosphere microbial communities with subsequent effects on nutrient uptake that directly affects olive tree physiology and performance. In this context, a greenhouse experiment was carried out in order to study the effects of mycorrhizal colonization by R. irregularis on photosynthesis, pigment content, carbohydrate profile, and nutrient uptake in olive tree. After six months of growth, photosynthetic rate in mycorrhizal (M) plants was significantly higher than that of nonmycorrhizal plants. A sugar content analysis showed enhanced concentrations of mannitol, fructose, sucrose, raffinose, and trehalose in M roots. We also observed a significant increase in P, K, Ca, Mg, Zn, Fe, and Mn contents in leaves of the M plants. These results are important, since nutrient deficiency often occurs in Mediterranean semiarid ecosystems, where olive trees occupy a major place., M. Tekaya, B. Mechri, N. Mbarki, H. Cheheb, M. Hammami, F. Attia., and Obsahuje bibliografii
In this study we evaluate how variations in taxonomic composition and physical structure of macrophyte stands affect plant-dwelling chironomid assemblages in highly variable macrophyte assemblages in two densely vegetated backwaters. By using multivariate explanatory techniques we found that similar vegetation composition did not unequivocally relate to similar chironomid assemblages, moreover the diversity of macrophyte stands did not correlate with the taxonomic diversity of chironomid assemblages in the backwaters investigated. Taxonomic composition and structural characteristics of the vegetation had little influence on the taxonomic or functional (i.e. feeding groups) composition of chironomid assemblages inhabiting them. Similarly, there are only weak relationships between the distribution of certain chironomid species or functional feeding groups and the environmental variables investigated. In general, the structure of the vegetation was more closely associated with the distribution of dominant chironomid taxa than compositional variables (i.e. density of specific macrophyte taxa). In summary, the structure of aquatic vegetation (i.e. position, size of a stand of vegetation, total plant density) and characteristics of the environment where it develops may be more important in shaping plant-dwelling chironomid assemblages than the taxonomic composition of the vegetation., Mónika Tóth ... [et al.]., and Obsahuje seznam literatury
Long-term multidisciplinary research has significantly advanced our understanding of the Krkonoše Mts. arctic-alpine tundra. Three tundra zones (cryo-eolian, cryo-vegetated and niveo-glaciated) are recognized and can be found on the highest summits, etchplains of the western and eastern parts of the mountains and in glacial cirques on both sides of the state border. The arcticalpine tundra of the Krkonoše Mts. is one of the major centres of geobiodiversity in the context of Central European mountains. and Jan Štursa.
Flowers of dicotyledonous plants host communities of arthropod species. We studied the community associated with dandelion (Taraxacum section Ruderalia), a complex of apomictic micro-species abundant in central Europe. Identification of microspecies in the field was impracticable. These plants produce an abundance of flowers that host arthropod communities that are not yet fully documented. We investigated species occurrence, its diurnal and seasonal variation and some of the factors that determine the abundance of the dominant species. Insect and spiders were collected from 2010 to 2012 at a locality in Prague. Whole capitula were harvested at weekly intervals and resident arthropods were identified. Diurnal variation in insect presence and the effect of pollen and microclimate on some of the species were also examined. The insect community (> 200 species) consisted mainly of species of Hymenoptera (86 spp.), Coleoptera (56 spp.), Diptera (46 spp.) and Heteroptera (23 spp.). The most abundant were Thysanoptera (2 spp.). Pollen eaters/collectors and nectar feeders dominated over predators and occasional visitors. From April to mid-August, the insect community was dominated by Coleoptera, and later by Diptera and Hymenoptera. Except for Meligethes spp. and species breeding in the capitula, the insects occupied flowers during the daytime when the flowers were open (10-12 h in spring and only 2-4 h in late summer). The presence of Meligethes spp. in particular flowers was associated with the presence of pollen; the occurrence of Byturus ochraceus with pollen and flower temperature. Although pollination is not necessary, dandelion plants produce both nectar and pollen. The community of arthropods that visit dandelion flowers is rich despite their being ephemeral.The composition of local faunas of flower visitors, presence of floral rewards and flower microclimate are important factors determining the composition of the flower community., Alois Honěk, Zdenka Martinková, Jiří Skuhrovec, Miroslav Barták, Jan Bezděk, Petr Bogusch, Jiří Hadrava, Jiří Hájek, Petr Janšta, Josef Jelínek, Jan Kirschner, Vítězslav Kubáň, Stano Pekár, Pavel Průdek, Pavel Štys, Jan Šumpich., and Obsahuje bibliografii