We deal with unbounded dually residuated lattices that generalize pseudo $MV$-algebras in such a way that every principal order-ideal is a pseudo $MV$-algebra. We describe the connections of these generalized pseudo $MV$-algebras to generalized pseudo effect algebras, which allows us to represent every generalized pseudo $MV$-algebra $A$ by means of the positive cone of a suitable $\ell $-group $G_A$. We prove that the lattice of all (normal) ideals of $A$ and the lattice of all (normal) convex $\ell $-subgroups of $G_A$ are isomorphic. We also introduce the concept of Archimedeanness and show that every Archimedean generalized pseudo $MV$-algebra is commutative.
The class of commutative dually residuated lattice ordered monoids ($DR\ell $-monoids) contains among others Abelian lattice ordered groups, algebras of Hájek’s Basic fuzzy logic and Brouwerian algebras. In the paper, a unary operation of negation in bounded $DR\ell $-monoids is introduced, its properties are studied and the sets of regular and dense elements of $DR\ell $-monoids are described.