A morphological type of Sarcocystis cysts found in one of two examined great black-backed gull, Larus marinus (Linnaeus) (Laridae), is considered to represent a new species for which the name Sarcocystis lari sp. n. is proposed and its description is provided. The cysts are ribbon-shaped, very long (the largest fragment found was 6 mm long) and relatively narrow (up to 75 μm). Under a light microscope the cyst wall reaches up to 1 μm and seems to be smooth. Using a computerized image analysis system, knolls, which resemble protrusions on the wall surface, are visible. Lancet-shaped cystozoites measure in average 6.9 × 1.4 μm (range 6.3-7.9 μm × 1.2-1.5 μm) in length. Observed using Transmission electron microscopy (TEM), the cyst wall is wavy and measures up to 1.2 μm in thickness. The parasitophorous vacuolar membrane has regularly arranged small invaginations. Cyst content is divided into large chambers by septa. Sarcocystis lari sp. n. has type-1 tissue cyst wall and is morphologically indistinguishable from other bird Sarcocystis species characterized by the same type of the wall. On the basis of 18S rRNA gene, 28S rRNA gene and ITS-1 region sequences, S. lari is a genetically distinct species, being most closely related to avian Sarcocystis species whose definitive hosts are predatory birds.
The African continent has a rich diversity of fish and amphibians in its inland water systems that serve as hosts for monogeneans of seven genera of the Gyrodactylidae van Beneden et Hesse, 1832. In August 2011, eight gyrodactylid parasites were collected from the gills of two specimens of bulldog, Marcusenius macrolepidotus (Peters), from Lake Kariba, Zimbabwe. Morphometric evaluation and sequencing of 18S rDNA confirmed that the specimens represented a species of a new viviparous genus, Tresuncinidactylus wilmienae gen. et sp. n. The attachment apparatus consists of a single pair of large slender hamuli with prominently flattened roots that are connected by a simple, narrow dorsal bar. The ventral bar is small and possesses a thin lingulate membrane but no evident anterolateral processes. There are 16 marginal hooks of one morphological type, but of three different sizes, with large falculate sickles that are proportionaly equal in length to the length of their handles. The two largest pairs of marginal hooks are positioned closest to the opisthaptoral peduncle, the neighbouring two pairs of medium-sized marginal hook sickles are situated along the lateral margins of the opisthaptor. Four pairs of smallest marginal hooks are positioned along the posterior margin of the opisthaptor. The male copulatory organ consists of a muscular pouch armed with approximately 30 gracile spines. Phylogenetic analyses of partial sequences of the 18S rDNA using Maximum Likelihood and Bayesian Inference placed the new genus within the lineage of solely African genera and suggests Afrogyrodactylus Paperna, 1968, Citharodactylus Přikrylová, Shinn et Paladini, 2017 and Mormyrogyrodactylus Luus-Powell, Mashego et Khalil, 2003 as genera most closely related to the new genus., Iva Přikrylová, Maxwell Barson, Andrew P. Shinn., and Obsahuje bibliografii
Fluorescence in situ hybridization (FISH) is a technique used to determine the chromosomal position of DNA and RNA probes. The present study contributes to knowledge on jumping plant-lice genomes by using FISH with 18S rDNA and telomeric (TTAGG)n probes on meiotic chromosomes of Psylla alni (2n = 24 + X), Cacopsylla mali (2n = 22 + neo-XY and 20 + neo-X1X2Y), C. sorbi (2n = 20 + neo-XY), Baeopelma foersteri (2n = 14 + X), and Rhinocola aceris (2n = 10 + X). This is the first study that has used FISH on the hemipteran superfamily Psylloidea. We found that the chromosomes of all studied species contain the insect-type telomere motif, (TTAGG)n. In C. mali and C. sorbi, the neo-sex chromosomes originating from autosome-sex chromosome fusions showed no interstitially located clusters of TTAGG repeats, suggesting their loss or inactivation. Similarly, no interstitial (TTAGG)n clusters were detected in an extremely large autosome pair of B. foersteri that most likely originated from a fusion of at least five ancestral chromosome pairs. Clusters of 18S rDNA were detected on the fused and second largest autosome pairs of B. foersteri and on one of the large autosome pairs of the remaining species. In C. mali and B. foersteri, the rDNA clusters were shown to coincide with the NORs as detected by the AgNOR method. Finally, we speculate, based on the obtained FISH markers, on the mechanisms of karyotype evolution of psylloid species differing in chromosome numbers and sex chromosome systems., Anna Maryańska-Nadachowska, Valentina G. Kuznetsova, Natalia V. Golub, Boris A. Anokhin., and Obsahuje bibliografii
The bug family Nabidae (Heteroptera) includes taxa showing either a low chromosome number 2n = 16 + XY or high chromosome numbers 2n = 26 or 32 + XY. In order to reveal the direction of karyotype evolution in the family, a molecular phylogeny of the family was created to reveal the taxon closest to the ancestral type and hence the ancestral karyotype. The phylogeny was based on a partial sequence of the 18S rDNA gene of both high and low chromosome number species belonging to the subfamilies Prostemmatinae and Nabinae. Phylogeny created by the Neighbour Joining method separated the subfamilies, Prostemmatinae and Nabinae, which form sister groups at the base of this phylogenetic tree, as well as within the Nabinae, tribes Nabini and Arachnocorini. Combining karyosystematic data with the phylogeny of the family indicated that the ancestral karyotype was a high chromosome number, consisting of 2n = 32 + XY. During the course of evolution changes have occurred both in meiotic behaviour of the sex chromosomes and in the number of autosomes. The direction of karyotype evolution was from a high to low autosome number. Abrupt decreases in the number of autosomes have occurred twice; firstly when the tribe Arachnocorini differentiated from the main stem in the subfamily Nabinae and secondly within the tribe Nabini, when within the genus Nabis 2n = 16 + XY species diverged from the 2n = 32 + XY species. A scheme of the sequence of events in karyotype evolution during the evolution of the Nabidae is presented.
Tissue samples from wildlife from South Africa were opportunistically collected and screened for haemoprotozoan parasites using nonspecific PCR primers. Samples of 127 individuals were tested, comprising over 50 different species. Haemogregarines were the most commonly identified parasites, but sarcocystids and piroplasmids were also detected. Phylogenetic analyses estimated from the 18S rDNA marker highlighted the occurrence of several novel parasite forms and the detection of parasites in novel hosts. Phylogenetic relationships, which have been recently reviewed, appear to be much more complex than previously considered. Our study highlights the high diversity of parasites circulating in wildlife in this biodiverse region, and the need for further studies to resolve taxonomic issues., D. James Harris, Ali Halajian, Joana L. Santos, Lourens H. Swanepoel, Peter John Taylor, Raquel Xavier., and Obsahuje bibliografii
Ant-like stone beetles (Coleoptera: Scydmaenidae) include more than 4,850 described species in about 90 genera maintained as a separate cosmopolitan family since 1815. Recent authors have hypothesised that Scydmaenidae might be rooted deep inside rove-beetles (Staphylinidae). To test this hypothesis we analysed 206 parsimoniously informative larval and adult morphological characters scored for 38 taxa. Strict consensus topologies from the shortest trees in all 12 analyses consistently placed Scydmaenidae as sister to (Steninae + Euaesthetinae) in a monophyletic Staphylinine Group (with or without Oxyporinae). The single fully resolved and most consistently supported topology maintains a monophyletic Staphylinine Group consisting of Oxyporinae + (Megalopsidiinae + (("Scydmaenidae" + (Steninae + Euaesthetinae)) + (Leptotyphlinae + (Pseudopsinae + (Paederinae + Staphylininae))))); Solierius lacks larval data and is ambiguously placed within the Group. Eight analyses of variably aligned 18S rDNA data for 93 members of Staphylinoidea under parsimony, neighbour-joining and Bayesian approaches were markedly inconsistent, although partly congruent with the Scydmaenidae + (Steninae + Euaesthetinae) hypothesis. Our results strongly suggest that ant-like stone beetles do not form an independent family, but are morphologically modified members of Staphylinidae and, consequently, should be treated as a 32nd recent subfamily within the megadiverse Staphylinidae sensu latissimo. Formal taxonomic acts are: Scydmaeninae Leach, 1815, status novus (= Scydmaenidae Leach, 1815); Scydmaenitae Leach, 1815, status novus (= Scydmaeninae Leach, 1815); Mastigitae Fleming, 1821, status novus (= Mastiginae Fleming, 1821); Hapsomelitae Poinar & Brown, 2004, status novus (= Hapsomelinae Poinar & Brown, 2004). The family Staphylinidae sensu latissimo becomes the largest in Coleoptera and in the whole of the Animal Kingdom, with 55,440 described species (extant plus extinct), thus surpassing Curculionidae with an estimated 51,000 described species.
Khawia abbottinae sp. n. is described from the Chinese false gudgeon, Abbottina rivularis (Basilewsky) (Cyprinidae: Gobioninae), from the Yangtze River basin in China. The new species can be distinguished from the congeneric species mainly by the arrangements of the testes, which form two longitudinal bands (other congeneric species have the testes irregularly scattered throughout the testicular region) and their number (at maximum 85 testes versus at least 160 in the other Khawia spp.), and the morphology of the scolex, which varies from cuneiform to widely bulbate scolex, being separated from the remaining body by a short neck and possessing a smooth, blunt or rounded anterior margin. Other typical features of K. abbottinae are its small size (total length less than 1.5 cm) and body shape, with the maximum width at its first third. The distinct status of the new species was confirmed by molecular data (ssrDNA and ITS1 sequences). Phylogenetic analyses revealed a close relationship of the new species with K. rossittensis (Szidat, 1937) and K. parva (Zmeev, 1936), parasites of crucian carp and goldfish (Carassius spp.), but both species markedly differ from K. abbottinae in their morphology. Until now, five valid species of Khawia (K. abbottinae, K. japonensis, K. rossittensis, K. saurogobii and K. sinensis) have been reported from China.
Phylogenetic relationships among 16 genera of the subfamily Aphidiinae (Hymenoptera: Braconidae) were investigated using sequence data from three genes: the mitochondrial large ribosomal subunit (16S), 18S ribosomal DNA and mitochondrial ATPase 6. All sequences were downloaded from the GenBank database. A total of 2775 base pairs of aligned sequence were obtained per species from these three genes. The results support the existence of three-tribes: Ephedrini, Praini and Aphidiini, with the Ephedrini occupying the basal position; Aphidiini could be further subdivided into three subtribes: Monoctonina, Trioxina and Aphidiina. The genus Aphidius is a paraphyletic group. The taxonomic status of the subfamily Aphidiinae within the Braconidae is probably closer to the non-cyclostome than the cyclostome subfamilies.
Adult trematodes of Allocreadium Looss, 1900 (Digenea) infect the intestine of mostly freshwater fishes in Asia, Europe, Africa and the Americas. During routine parasitological surveys in the Vaal River system, adult trematodes were collected from the intestine of smallmouth yellowfish, Labeobarbus aeneus (Burchell). The trematodes were confirmed to represent a member of Allocreadium and did not match any existing taxon. Therefore, they are described as a new species, Allocreadium apokryfi sp. n. The morphology of the new species most closely resembles that of Allocreadium aswanense El-Naffar, Saoud et Hassan, 1984, but it differs from it by having a bipartite internal seminal vesicle, wider eggs, a shorter intertesticular distance, an intestinal bifurcation at the ventral sucker level, a ventral sucker that is larger than the oral sucker, and a genital pore near the intestinal bifurcation or the ventral sucker. The surface topology of the new species is notably different from that of other allocreadiids. Papillae were observed in the ventral sucker and surrounding both ventral and oral suckers, but the number and arrangement of the latter were not consistent among specimens. The protruding cirrus of A. apokryfi sp. n. was described using SEM and is the first such observation for the genus. Genetic characterisation showed that the new species was clearly distinct from other Allocreadium spp. using both 18S (nucleotide difference 1.3-9.1%) and 28S (4.7-6.5%) rDNA, forming a well-supported clade in Allocreadium. The presence of A. apokryfi sp. n. in a well-studied river is unexpected, and considering the diet of its host and the scarcity of Allocreadium in Africa, the possible biology of this species is discussed herein.
Tapeworms of the order Spathebothriidea Wardle et McLeod, 1952 (Cestoda) are reviewed. Molecular data made it possible to assess, for the first time, the phylogenetic relationships of all genera and to confirm the validity of Bothrimonus Duvernoy, 1842, Diplocotyle Krabbe, 1874 and Didymobothrium Nybelin, 1922. A survey of all species considered to be valid is provided together with new data on egg and scolex morphology and surface ultrastructure (i.e. microtriches). The peculiar morphology of the members of this group, which is today represented by five effectively monotypic genera whose host associations and geographical distribution show little commonality, indicate that it is a relictual group that was once diverse and widespread. The order potentially represents the earliest branch of true tapeworms (i.e. Eucestoda) among extant forms.